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2.160 IDENTIFICATION, ESTIMATION, AND LEARNING
LECTURE NOTES NoO. 8

8. Bayesian Filter and Gaussian Kalman Filter

In this chapter we will look at some fundamentals of stochastic estimation. We will begin with a
brief introduction to Markov Process and Chapman-Kolmogorov Equation, in which we will extend our
goal from estimation of a single value, like state or parameter value estimation, to estimation of the whole
distribution (pdf) of random variables. Then we will introduce Bayesian Filter, which is based on Bayes’
Rule and the Chapman-Kolmogorov equation. Finally, we will revisit Kalman Filter and prove that the
Kalman Filter with Gaussian noise distribution is the optimal filter among all the linear and nonlinear
filters. This proof is based on the Bayesian Filter; in other words, Gaussian Kalman Filter is a special case
of Bayesian Filter.

8.1 Estimation of Distribution/Density
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Our objective of state estimation thus far is to determine a single value, % , from the random

variable having some distribution. This section addresses how to estimate the whole distribution,
rather than a single value.

A single value, e.g. mean, is sometimes a poor representation. See the bi-modal case below. The
mean is least likely.
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Representation in terms of:
e Pdf, pmf
e Parametric, e.g. o, W, Py
e Non-parametric, e.g. samples, particles.

8.2 Bayes’ Rule

Consider a random variable X and its observation Y. Suppose we know the conditional
probability:

p(y|x): X =x->Y=y (1)

Then, can we estimate x by observing Y =y

p(Xy):Y =y — X =x(Infer x from y)
Recall joint probability and Bayes Rule:

P(xy)=p(xy)p(y)=pP(¥x)p(x)

x) p(x (2)
s 20t

Remarks:
e p(y) does not affect the estimation of x; it is merely a scaling factor.
e For p(x|y)to be a pdf, it must integrate to 1.

e Since I p(y|x) p(x)dx=p(y), dividing p(y|x)p(x) by p(y) makes p(x|y) a pdf.

Replacing 77 =

1 . :
, a scaling factor, we obtain
p(y)
p(xy)=np(y|x)p(X) (3)
Important terminology:
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e p(X]y)—> posterior probability
e p(x)—>prior probability

e Yy—data

e p(y|x)—>generative model

8.3 Markov Process and Recursive Bayes Filter
Our interest is to estimate a random process governed by a state transition equation:
X =T (X0 Uy) + Wy (4)
where wy.; is uncorrelated process noise with pdf fy(w;), and an observation equation
Y =h(x)+v, (5)
where v; is uncorrelated measurement noise with pdf f,(v;).

A random process is called a Markov process if the probability of X;= x; depends on x..; and U1
alone, and not on past states and input:

Pr(xt |Xo’ TR Xt—l’uO’”"ut—l) = Pr(xt |Xt—l1ut—1) (6)

This is the case for the above state equation. Given X.; and U1, the randomness of x; comes only
from wi.1. Therefore, replacing w1 by X - f(Xw.1, Ur.1), We obtain

Pr(xt |Xt—17ut—l)= fW (Xt _f(xt—l’ut—l)) (7)
4 fulxe - F(Xe1,Ur1)) 4 Shifting = f (X))
or
by shifting the
horizontal axis
9
X f(Xe1,Ue1) W, f(Xt-1,Ut1) X

Let gy-1(X:) be the probability density of x; propagated through the state equation. State X; can be
reached from various states in one time step earlier, X1, which has probability density gi1(X¢.1).
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Xt-1
Xt
t-1 t time
Therefore, (recall p(x)= J' p(x]y)p(y)dy)
gt|t—l(xt) = I fu (Xt —f (Xt—l’ut—l)) gt—l(xt—l)dxt—l (8)

Given the (posterior) density g:1(Xt1) at time t-1 and input u.1, the probability density of x;
propagated through the state equation can be computed with the above equation. . . . state
propagation.

This is a type of Chapman-Kolmogorov Equation.

Next, we update the probability density gy:.1(X:) by assimilating data y:.
... state update/correction.

Recall Bayes Rule

p(xy)=np(y|x)p(X) ©)

Where y is new data, p(X) is gyt-1(Xt), p(X|y) corresponds to gi«(x:), the posterior density after
assimilating y;, and p(y|x) is the generative model obtained from equation (5):

p(yI1x)=f, (v —h(x)) (10)

Therefore,
gt(xt)zﬂfv(yt_h(xt))gﬂt—l(xt) (11)

This recursive Bayes Algorithm is called Bayes Filter. See the block diagram below.
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Propagation | gyt1(X:) Update
through state »| (Correction)
eq. Bayes Rule

Updated posterior gi(Xt)
density

Bayes Filter Algorithm: Xt
Given gi1(Xw1), U1, and i
Compute:
Gy (%) = T fu (% —F (%2 Uiy )) Gea (Xa ) O%sy (12)

—00

gt(Xt):??fv (yt _h(xt))gt|t—l(xt)

Return gi(x:).

8.4 Gaussian Kalman Filter
The Kalman Filter with Gaussian noise can be derived from the Bayes Filter. Namely,

Gaussian Kalman Filter is a special case of Bayes Filter. Consider a linear, time-varying system,
Yo =HX +Vv,

where w; and v, are zero-mean, uncorrelated process and measurement noise with Gaussian

densities:
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fW (Wt) = ﬁexp(_%v\&TQthtj
€ ( ”Qt) (14)

1

_ _1 To-1
)= (2,;&)”"( SR

The problem is to find the optimal estimate £ :

)zt:arnginEDxt—x|2|u0,...,ut71,yl,...,yt] (15)
The solution is the conditional mean.
),ZtZE[Xt|u0"“7ut—l’yl7“'7yt] (16)
If not mean
A
increases

which comes with
X = )’Ztlt—l + PthT Rt_l(yt - Ht),zllt—l)’ (17)
Kalman Gain K, =PH/;R™*
This is the same linear update law as the one we obtained previously, but it is the optimal among
linear and non-linear filters.

Initial Conditions: Xo is a Gaussian random variable with mean X, and covariance Py>0 positive
definite. You can skip the first step of the following proof, which is rather technical. Step 2
shows how the linear recursive update law, (17), is obtained.

Proof:
Step 1. Show that the propagated probability density g.1(X:) is Gaussian.

gt|t—l (Xt ) = _[ fW (Xt - A—lxt—l - Bt—lut—l) O (Xt—l) dxt—l (18)
We use Induction: Assuming that g.1(x) is Gaussian with mean % _, and covariance Py.1, show
that g1 (X:) is also Gaussian.
Since both f,() and gw1(X;) are Gaussian, we can combine their exp() terms together

91 (x) =] 1
tt-1 o \/det(ZEQt_l)det(ZEPt—l)

exp(_L(Xt'Xt—l))dXt—l (19)
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where L is a quadratic function given by

1

1 _ . _ .
L(Xt ' Xt—l) = E(Xt - A—lxt—l - Bt—lut—l )T t—ll (Xt - A—lxt—l - Bt—lut—l) + E (Xt—l — X4 )T Pt—:lj: (Xt—l - Xt—l) (20)

Let Pye.1 and x,_, be defined as

_ 1\—1
P 2(ALQEAL +PD)

(21)
X3 £ Py [ ALQE (% —Biliy) +R3% |
Construct another quadratic function,
1 = _ o
M (Xt’Xt—l)z_(Xt—l_Xt—l)T Pt|til(xt—1_xt—1) (22)

2

We can show that Lo = L(X;, Xt-1) — M(X;, Xt1) is independent of x..;; therefore Lo can be factored
out from the integral.

Jyr (X )= ﬁtoexp(—L0 (D)) exp(—M (%, % 1)) dx, (23)

Since M(xi, X1) is a quadratic function, it forms another Gaussian distribution, which integrates
to a constant.
1

——_— :eXp (Xt—l — X )T Ptil (Xt—l - YH) dx_, =1
e, Pl R ) "

—>_|iexp(—M (X X1) ) Xy = det(27th|t71): constant

Using this in (23) yields

det(R,,)
det (27Q_,P_,)

gm(m—nexp(—Lo(x)),n—\/ (25)

where

1 . -1 .
Lh=L-M = E I:Xt - ( A X +Bu )]T (A\—l I::;—1'A\T_1 + Qt—l) I:Xt - ( A X +Bu, )] (26)
is a quadratic function of x;.

Gy (%) 1s Gaussian
with mean A—l)zt—l + Bt—lut—l = )zﬂt—l

and covariance B, , =( AP A", +Q.,)
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Step 2. State update by assimilating new measurement y:;.

Recall

gt(xf) =1 p(yt | X ) gt|t—1(xt)
n = scaling factor
0y (X)) Gaussian with mean X, ,, covariance B, ,

p(Y %)=, (¥, —H,x ) Gaussian with mean 0, covariance R, (27)
9.(x) =n7exp(-N(x))

1 _ 1 s \T o .
N(X’[) :E(yt - HtXt)T Rt 1(yt - Htxt)""E(Xt _Xt|t—l) P[|ti1(xt - Xt|t—1)
N(x;) Is a quadratic function of x.. The optimal estimate of £ is the mean:

% =E[X [Up Uy Yoo Y] = [ %@ (x)dx (28)

gi(xy)

v

Xt

e

At the mean X =E[x |u,y],
dx,
dg d
=2t “N(%))—(=N(x))=0
o nexp( (xt))dxt( (x))
SLONGY)
dx,
_)_HITRt_l(yt _Htxt)—i_Ptlil(Xt _)’zﬂt—l)zo

(29)

Replacing x; satisfying this condition by % yields:
Pt (% = %ya) = HIRZ (Y, —Hi%y s+ H Ry —H R
= HIR™ (¥, = HiRys )+ HIRH, (%5 - %) (30)
[Ptlil + HtTRt_lHt]()A‘t ~ %) = HIR (Y~ Hiky )
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Recall the covariance update law of Discrete Kalman Filter, eq.(5-41). We can find that
R*=R4L+H/R™H, (31)

Therefore,
SXo= )A(t|t—1 + RHtTRtil(yt - Ht)’zﬂt—l)

(32)
(K, =RH/R™) Kalman Gain
We have arrived at the familiar linear filter. In finding this optimal state estimate, we
never assumed that the filter is linear. This implies that the Gaussian Kalman filter is the optimal
among linear and nonlinear filters. Remember that we assumed the linear update law and
obtained the optimal gain Kt previously. Now we assumed Gaussian distributions, but did not
assume the linear form. It is a consequence.





