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2.160 IDENTIFICATION, ESTIMATION, AND LEARNING 

LECTURE NOTES NO. 8  

8. Bayesian Filter and Gaussian Kalman Filter 

 In this chapter we will look at some fundamentals of stochastic estimation. We will begin with a 
brief introduction to Markov Process and Chapman-Kolmogorov Equation, in which we will extend our 

goal from estimation of a single value, like state or parameter value estimation, to estimation of the whole 
distribution (pdf) of random variables. Then we will introduce Bayesian Filter, which is based on Bayes’ 

Rule and the Chapman-Kolmogorov equation. Finally, we will revisit Kalman Filter and prove that the 

Kalman Filter with Gaussian noise distribution is the optimal filter among all the linear and nonlinear 
filters. This proof is based on the Bayesian Filter; in other words, Gaussian Kalman Filter is a special case 

of Bayesian Filter. 

8.1 Estimation of Distribution/Density 

 

 
 

Our objective of state estimation thus far is to determine a single value, ˆ
tx , from the random 

variable having some distribution.  This section addresses how to estimate the whole distribution, 

rather than a single value.  

 

A single value, e.g. mean, is sometimes a poor representation. See the bi-modal case below. The 

mean is least likely. 
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Representation in terms of: 

 Pdf, pmf 

 Parametric, e.g. σ, μ, Pt 

 Non-parametric, e.g.  samples, particles. 

 

 

8.2 Bayes’ Rule 

 

Consider a random variable X and its observation Y.  Suppose we know the conditional 

probability: 

   :p y x X x Y y    (1) 

 

 

Then, can we estimate x by observing Y = y 

   :p x y Y y X x   (Infer x from y) 

 

Recall joint probability and Bayes Rule: 

 

 

         

 
   

 

,p x y p x y p y p y x p x

p y x p x
p x y

p y

 

 
 (2) 

Remarks: 

 p(y) does not affect the estimation of x; it is merely a scaling factor. 

 For p(x|y)to be a pdf, it must integrate to 1. 

 Since      p y x p x dx p y





 , dividing p(y|x)p(x) by p(y) makes p(x|y) a pdf. 

Replacing 
 
1

p y
 , a scaling factor, we obtain 

      p x y p y x p x  (3) 

Important terminology: 

Xt 

probability 

density  
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  p x y    posterior probability  

  p x prior probability 

 y data 

  p y x generative model 

 

8.3 Markov Process and Recursive Bayes Filter 

 

Our interest is to estimate a random process governed by a state transition equation: 

 

  1 1 1,t t t tx x u w   f  (4) 

 

where wt-1 is uncorrelated process noise with pdf fW(wt), and an observation equation 

 

  t t ty x v h  (5) 

 

where vt is uncorrelated measurement noise with pdf fv(vt).   

 

A random process is called a Markov process if the probability of Xt = xt depends on xt-1 and ut-1 

alone, and not on past states and input: 

 

    0 1 1 0 1 1 1Pr , , , , , , Pr ,t t t t t tx x x x u u x x u     (6) 

 

This is the case for the above state equation.  Given xt-1 and ut-1, the randomness of xt comes only 

from wt-1.  Therefore, replacing wt-1 by xt - f(xt-1, ut-1), we obtain 

 

     1 1 1 1Pr | , ,t t t W t t tx x u f x x u     f  (7) 

 

 
 

 

Let gt|t-1(xt) be the probability density of xt propagated through the state equation.  State xt can be 

reached from various states in one time step earlier, xt-1, which has probability density gt-1(xt-1). 

 

xt-f(xt-1,ut-1) 

 

fw(xt - f(xt-1,ut-1)) Shifting  fw
*
(xt) 

f(xt-1,ut-1) 

 

or  

by shifting the 

horizontal axis 
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Therefore, (recall      |p x p x y p y dy





  ) 

       | 1 1 1 1 1 1,t t t W t t t t t tg x f x x u g x dx



     



  f  (8) 

 

Given the (posterior) density gt-1(xt-1) at time t-1 and input ut-1, the probability density of xt 

propagated through the state equation can be computed with the above equation. . . . state 

propagation. 

This is a type of Chapman-Kolmogorov Equation. 

 

Next, we update the probability density gt|t-1(xt) by assimilating data yt. 

. . . state update/correction. 

 

Recall Bayes Rule 

 

      p x y p y x p x  (9) 

Where y is new data, p(x) is gt|t-1(xt), p(x|y) corresponds to gt(xt), the posterior density after 

assimilating yt, and p(y|x) is the generative model obtained from equation (5): 

 

     | V t tp y x f y x h  (10) 

Therefore, 

       | 1t t V t t t t tg x f y x g x  h  (11) 

This recursive Bayes Algorithm is called Bayes Filter.  See the block diagram below. 

t t-1 

xt-1 

xt 

time 
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Bayes Filter Algorithm: 

Given gt-1(xt-1), ut-1, and yt 

Compute: 

 
      

      

| 1 1 1 1 1 1

| 1

,t t t W t t t t t t

t t V t t t t t

g x f x x u g x dx

g x f y x g x



     





 

 

 f

h

 (12) 

Return gt(xt). 

 

8.4 Gaussian Kalman Filter 

The Kalman Filter with Gaussian noise can be derived from the Bayes Filter.  Namely, 

Gaussian Kalman Filter is a special case of Bayes Filter.  Consider a linear, time-varying system, 

 
1t t t t t t

t t t t

x A x B u w

y H x v

   

 
 (13) 

where wt and vt are zero-mean, uncorrelated process and measurement noise with Gaussian 

densities: 

ut-1 

f(xt-1, ut-1) h(xt) 

gt-1(xt-1) 

wt 
xt-1 

xt-1 

fW 

vt 

fV 

Propagation 

through state 

eq. 

yt 

Update 

(Correction) 

Bayes Rule 

gt|t-1(xt) 

gt(xt) 

xt 

Updated posterior 

density 
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1

1

1 1
exp

2det 2

1 1
exp

2det 2

T

W t t t t

t

T

V t t t t

t

f w w Q w
Q

f v v R v
R









 
  

 

 
  

 

(14) 

The problem is to find the optimal estimate ˆ
tx : 

2

0 1 1
ˆ arg min | | | , , , , ,

t
t t t t t

x
x E x x u u y y

    (15) 

The solution is the conditional mean. 

 0 1 1
ˆ | , , , , ,t t t tx E x u u y y (16) 

which comes with 

 1

| 1 | 1

1

ˆ ˆ ˆ ,  

Kalman Gain K

T

t t t t t t t t t t

T

t t t t

x x PH R y H x

PH R



 



  


(17) 

This is the same linear update law as the one we obtained previously, but it is the optimal among 

linear and non-linear filters.   

Initial Conditions: X0 is a Gaussian random variable with mean x0 and covariance P0>0 positive 

definite. You can skip the first step of the following proof, which is rather technical. Step 2 

shows how the linear recursive update law, (17), is obtained. 

Proof: 

Step 1. Show that the propagated probability density gt|t-1(xt) is Gaussian. 

     | 1 1 1 1 1 1 1 1t t t W t t t t t t t tg x f x A x B u g x dx



       



   (18) 

1
ˆ

tx 
and covariance Pt-1, show We use Induction: Assuming that gt-1(xt) is Gaussian with mean 

that gt|t-1(xt) is also Gaussian. 

Since both fw() and gt-1(xt) are Gaussian, we can combine their exp() terms together 

 
   

  | 1 1 1

1 1

1
exp ,

det 2 det 2
t t t t t t

t t

g x L x x dx
Q P 



  


 

  (19) 

If not mean 

increases 
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where L is a quadratic function given by 

 

          1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1
ˆ ˆ,

2 2

T T

t t t t t t t t t t t t t t t t t tL x x x A x B u Q x A x B u x x P x x 

                      (20) 

 

Let Pt|t-1 and 
1tx 
be defined as 

 

 
 

 

1
1 1

| 1 1 1 1 1

1 1

1 | 1 1 1 1 1 1 1
ˆ

T

t t t t t t

T

t t t t t t t t t t

P A Q A P

x P A Q x B u P x


 

    

 

       



   

 (21) 

 

Construct another quadratic function, 

 

      1

1 1 1 | 1 1 1

1
,

2

T

t t t t t t t tM x x x x P x x

         (22) 

 

We can show that L0 = L(xt, xt-1) – M(xt, xt-1) is independent of xt-1; therefore L0 can be factored 

out from the integral. 

 

       | 1 0 1 1

1
exp exp ( , )

det()
t t t t t t tg x L x M x x dx



  


    (23) 

 

Since M(xt, xt-1) is a quadratic function, it forms another Gaussian distribution, which integrates 

to a constant. 

  
    

   

1

1 1 | 1 1 1 1

| 1

1 1 | 1

1
exp 1

det 2

exp ( , ) det 2 :  constant

T

t t t t t t t

t t

t t t t t

x x P x x dx
P

M x x dx P








     






  


  

  





 (24) 

 

Using this in (23) yields 

 

 
 

 
| 1

| 1 0

1 1

det
( ) exp ( ) ,

det 2

t t

t t t t

t t

P
g x L x

Q P
 







 

            (25) 

 where 

      
1

0 1 1 1 1 1 1 1 1 1 1 1 1

1
ˆ ˆ

2

T T

t t t t t t t t t t t t t tL L M x A x B u A P A Q x A x B u


                          (26) 

is a quadratic function of xt. 

 

 

 

| 1

1 1 1 1 | 1

| 1 1 1 1 1

( ) is Gaussian

ˆ ˆwith mean 

and covariance 

t t t

t t t t t t

T

t t t t t t

g x

A x B u x

P A P A Q
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Step 2. State update by assimilating new measurement yt. 

 

Recall 

 

 

   

 

   

| 1

| 1 | 1 | 1

1

( ) | ( )

 scaling factor

ˆ( ) Gaussian with mean , covariance 

|  Gaussian with mean 0, covariance 

( ) exp ( )

1 1
ˆ( )

2 2

t t t t t t t

t t t t t t t

t t V t t t t

t t t

T

t t t t t t t t t

g x p y x g x

g x x P

p y x f y H x R

g x N x

N x y H x R y H x x









  







 

 

       1

| 1 | 1 | 1
ˆ

T

t t t t t t tx P x x

  

 (27) 

N(xt) is a quadratic function of xt.  The optimal estimate of ˆ
tx is the mean: 

  0 1
ˆ | , , , , , ( )t t t t t t t t tx E x u u y y x g x dx






    (28) 

 
 

At the mean  ˆ | ,t tx E x u y , 

 
   

   1 1

| 1 | 1

( )
0

exp ( ) ( ) 0

( )
0

ˆ 0

t t

t

t
t t

t t

t

t

T

t t t t t t t t t t

dg x

dx

dg d
N x N x

dx dx

dN x

dx

H R y H x P x x



 

 



   

 

     

 (29) 

 

Replacing xt satisfying this condition by ˆ
tx yields: 

 

   

   

   

1 1

| 1 | 1 | 1 | 1

1 1

| 1 | 1

1 1 1

| 1 | 1 | 1

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

T

t t t t t t t t t t t t t t t t

T T

t t t t t t t t t t t t

T T

t t t t t t t t t t t t t t
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H R y H x H R H x x

P H R H x x H R y H x

 

   

 

 

  

  

    

   

      

 (30) 

gt(xt) 

xt 
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Recall the covariance update law of Discrete Kalman Filter, eq.(5-41). We can find that 

 

 1 1 1

| 1

T

t t t t t tP P H R H  

           (31) 

 

Therefore, 

 
 

 

1

| 1 | 1

1

ˆ ˆ ˆ

 Kalman Gain

T

t t t t t t t t t t

T

t t t t

x x PH R y H x

K PH R



 



   


        (32) 

 

We have arrived at the familiar linear filter. In finding this optimal state estimate, we 

never assumed that the filter is linear. This implies that the Gaussian Kalman filter is the optimal 

among linear and nonlinear filters.  Remember that we assumed the linear update law and 

obtained the optimal gain Kt previously. Now we assumed Gaussian distributions, but did not 

assume the linear form. It is a consequence. 

 




