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2.160 IDENTIFICATION, ESTIMATION, AND LEARNING 

LECTURE NOTES NO. 4 

4. Principal Components and Partial Least Squares Regression

In the previous chapter on Least Squares Estimate we have assumed that the regressor φ’s 

span the whole m-dimensional vector space so that the matrix ( ) ( )Tt t  may be non-

singular. This assumption is questionable, when we deal with a high dimensional input space, 

where the regressor vector contains a large number of components; 1m . If we apply the 

standard linear regression: ˆˆ Ty   , the same large number of parameters must be determined: 
1m  . 

We may face such a situation in several scenarios. 

 One is the growing application areas where abundant sensor information is available.

Nowadays inexpensive sensors connected to a network – Internet of Things (IoT), for
example - are available everywhere. Costs for acquiring, transmitting, and storing sensor data

have reduced dramatically. Extracting useful information from various observed data has

become an important issue thanks to technological advance in Sensor Network, Cloud

Computing, and Big Data analysis.

 Another situation is the lack of sufficient samples. It is sometimes infeasible or difficult to

obtain a large number of cohesive and consistent samples, or it is costly to run many

experiments. Biological experiments and clinical trials, for example, are often difficult to

repeat many times. The number of sensors, on the other hand, may be increased to observe
target phenomena from various perspectives. This may lead to the situation where the

dimension of the regressor vector is larger than the number of data samples: m > N. As a

result, the matrix ( ) ( )Tt t   becomes singular. 

In this section we will address issues associated with high dimensional input data, and 

introduce a new methodology for extracting significant signal components from the raw data. In 

other words, we aim to find a small set of variables, referred to as Latent Variables, which are 

encapsulated in the data but play significant roles in predicting the output. Since the dimension of 

Latent Variable space is low, the number of parameters to estimate is small. 

Before moving into theoretical development, we introduce a preliminary data processing, 
which is a common practice in Statistical Multivariate Analysis. First, we remove the mean of each 

variable from the original data: j j  , and then normalize it based on its variance
2

j . See

Figure 1. We deal with the following Mean-Centered, Normalized data: 

j j

j

j

x
 




 (1) 

A column vector x contains all the components xj: 

 1, ,
T

mx x x  . Furthermore, N samples of x are 

arranged in an m by N matrix X: 

1, , N m NX x x     (2) 

j

j

j

Distribution

Figure 1 Data distribution 
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where super scripts 1,…N represent sample numbers
1
.  

In the following we will study three methods for dealing with the large input space 

problem. We begin with multi-input, single-output problems followed by multi-input, multi-

output problems. 

 
 

 

4.1 Single-Output, Principal Components Regression 
 

The first method is Principal Components Regression, consisting of two steps of procedure. 

 
Step 1 Reduction of the Input Space 

 The rank of input sample matrix X is less than m when m > N. This implies that the 

information contained in the m-dimensional vectors, 
1, , Nx x ,  can be expresses in a lower 

dimensional space. To reduce the dimensionality let us first examine how the mean-centered 

input sample vectors are distributed in the m-dimensional vector space. See Figure 2. Let 
1mv    be a unit column vector in the m-dimensional vector space. The strength of each input 

sample in the direction of v can be expressed with the projection of the sample point onto the unit 
vector. In total, the squared strength of all the N samples in the direction of the unit vector is 

given by 

 
2

1 1 1

( ) ( )
N N N

T i T i i T T i i T T T

i i i

J v x v x x v v x x v v XX v
  

 
    

 
        (3) 

 

Examine in which direction of v this squared 
strength of the N samples becomes maximum. 

 

 max ( )
v

J v    subject to 1v    (4) 

 

This is a type of conditional optimization problem 

that can be solved with use of Lagrange’s multiplier 
λ. 

 

( ) ( 1)T T TL v v XX v v v     (5) 

 

The necessary conditions for this to be maximal are 

given by 
 

 0, 2 2 0TL
XX v v

v



  


   and   0, 1 0TL

v v



  


    (6) 

 

From the first equation it can be found that the vector v is an eigenvector of the matrix XX
T
 : 

 

                                                        
1 It is a common practice in statistical multivariate analysis that each data vector is represented as a 
row vector, and the input data matrix is usually the transpose of the above matrix defined in (2). 
However, in the 2.160 lecture notes we stay with the standard vector matrix notation. 

1x

2x

mx
ix

v
T iv x

Figure 2 Searching Principal Components 
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TXX v v   

 

Since matrix XX
T
 is a real symmetric matrix and is a positive semi-definite matrix, it possesses all 

real, non-negative eigenvalues and real eigenvectors. Without loss of generality, we can arrange 

the eigenvalues in a descending order with the first eigenvalue to be the largest, 

 

 

max 1 2 *

1 2 *

0m m

mv v v

          

  

      (7) 

 

where 1 2,v v  are eigenvectors associated with eigenvalues 1 2, ,  , and they are orthogonal 

to each other. The squared input signal strength J takes the largest value in the direction of the 

eigenvector 1v  associated with the largest eigenvalue 1  .  

Using the set of the eigenvectors as coordinate axes, the matrix XX
T
 can be diagonalized: 

 

 

1 1

2 2

1 2

1 1 1 2 2 2 * * *

0 0 0

0 0 0

0 0 0

0 0 0

T

T

T

m

T
m m

T T T T

m m m m m m

v

v
XX v v v

v

v v v v v v v v







   

  
  
  
  
   

  

     

     (8) 

 

 Note that, since the matrix XX
T
  is singular, some of the eigenvalues are zero. (At least 

(m-N) eigenvalues are zero if m N ). In fact all the sample data are involved in a subspace 

spanned by a smaller number of eigenvectors. In the last expression of (8), the first term 1 1 1

Tv v  is 

most significant, followed by the second term 2 2 2

Tv v  . The contribution of each term 
T

i i iv v  

diminishes as i increases. Some later terms with small eigenvalues can be ignored. This allows us 
to truncate the terms in (8) at an appropriate number, m*. 

 

1 1 1 2 2 2 * * *, *T T T T

m m mXX v v v v v v m m           (9) 

 

The percentage accuracy of approximation can be evaluated by 

 

1 2 *

1 2

100%m

m

  


  

  
 

  
        (10) 

 

 

Step 2 Construction of a low dimensional regression 
Now that a fewer number of eigenvectors can approximate the N samples, let us represent 

a new input vector newx  with the fewer variables. Taking projection of the new input vector onto 

each of the significant eigenvectors, we can define m* new variables: 
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1 1

2 2

* *

T

new

T

new

T

m new m

z x v

z x v

z x v







          (11) 

 

These new variables are called Principal Components, which are encapsulated in the original 
data, but are significant. Principal components are a type of Latent Variables, which will be 

discussed in detail in the following sections. In many applications, the first 3 ~ 5 principal 

components can approximate the majority of the original input vectors, which may be of high 

dimension. By using the principal components, we can formulate a reduced order regression for 
predicting output y: 

 

 
' '

1 1 * *
ˆ

m my b z b z    ,        (12) 

 

where the number of parameters to tune, *m , is much smaller than m, and they can be 

determined from the N samples by solving the standard Least Squares problem. To this end we 
convert all the sample points to principal components: 

 

 
TZ X V , 

 

where  1 2 *, , , mV v v v  is an m by m* vector consisting of the first m* eigenvectors, and is 

called Loading, and Z is an N by m* input data converted from the original samples. The least 
squares estimate of the reduced parameters is given by 

 

 

'

1

1

'

*

ˆ ' ( )T T

m

b

Z Z Z Y

b

 

 
 

  
 
 

       (13) 

 

where  1 1
T

N NY y y   . Note that the matrix Z
T
Z is a nonsingular matrix. This is 

called Principal Components Regression (PCR). 

 

 

4.2 Single-Output, Partial Least Squares Regression 
 

The above Principal Components Regression can compress the input space effectively. 
Output y was regressed on the low dimensional principal components, where the regressor 

consists of a truncated series of principal components having large eigenvalues. Then, the 

question is whether the principal components selected based on eigenvalues are the most useful 
set of variables for predicting output y. There may be other set of variables that would be more 

effective to predict the specific set of output data. In the PCR we have quietly assumed that those 

significant principal components play more important roles in predicting the output than those 

with smaller eigenvalues.  This may be a questionable assumption since it is conceivable that 
even less significant PCs may be more strongly correlated with the output than those PCs with 

larger eigenvalues. The principal component analysis explains the input data, but it does not 

explain the output and the relationship between the input and output. This section on Partial Least 
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Squares regression addresses exactly this issue and provides a solution. The basic idea is to find a 

low-dimensional set of input space variables that is most correlated with a given set of output 
data.  

 

4.2.1 Algorithm 

 
We begin with a simple algorithm for predicting a single output. The algorithm consists 

of three steps. 

 
Step 1 Finding the most correlated variable 

 Similar to the Principal Components analysis, 

consider a unit vector v in the m-dimensional input 
space, and take projection onto the unit vector: 

 

 
Tz x v ,    (14) 

 

where z is a scalar variable, called a Score variable. This 
time the unit vector v is determined in such a way that 

the associated score variable z may be most correlated 

with the output y. To this end we first project all the 
input data points onto the unit vector v, 

 

 ( ) ; 1, ,i i Tz x v i N          (15) 

 

and place them in a N-dimensional vector, 

 

 

1

1T N

v

N

z

Z X v

z



 
 

   
 
 

        (16) 

 
The correlation between the score variable z and the output y can be evaluated by 

 

 
1

( ) ( )
N

i i T T T

v

i

J z y Z Y v X Y v X Y


          (17) 

 

The problem is now to find the direction of the unit vector v that maximizes the correlation J. 

Note that in (17) the product X Y  is an m-dimensional column vector. It is clear from Figure 3 

that the correlation becomes maximal when the unit vector v is aligned with the vector X Y . 

 

 arg max ( )o

v

X Y
v J v

X Y
          (18) 

 

where the vector X Y is scaled by its absolute value X Y . 

 

Step 2  Predicting output y from score variable z 

Figure 3 Input – output correlation 
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 Our objective is to predict output y. Now that we have found that the score variable z 

associated with the unit vector 
ov  has the highest correlation with output y, the following linear 

prediction based on z is the best prediction using a single variable. 
 

 ˆ oy c z     (19) 

 

where 
oc is the scalar coefficient minimizing 

the mean squared error: 
 

 
2

2
1

arg min ( )
TN

o i i v

c
i v

Y Z
c y cz

Z

     

     (20) 

 

Figure 4 illustrates the correlation between the 

sampled score variables and the sampled 

outputs, and shows how the two are linked 

with the slope, i.e. the parameter c. 
 

Step 3 Repeating the process for the residue 

 The prediction of output y based on the single score variable z may be limited in 
accuracy. The data X and y may contain more correlation in other directions, which we should 

explore. We can expect that the prediction error may be reduced by using two score variables, say 

z and z’. The second score variable z’ is responsible for predicting the output in relation to the 

residue of the input data that the first score variable could not exploit,  
 

 ' oy y c z            (21) 

 
For N samples, we use the following N-dimensional output residue vector: 

 

 ' o

vY Y c Z            (22) 

 

As for the input data, we have already used 
T

vZ X v  for creating the prediction
o

vc Z . 

Therefore, we have to subtract this used information from the whole input data matrix X in order 

to find the second score variable. Consider the m x N matrix X as a collection of row vectors 

 1 1, , , 1, ,N N

j j jx x j m    ,  in the N-dimensional vector space. The score vector 

transpose 1T N

vZ   in the N-dimensional vector space indicates the direction in which the 

information encapsulated in X has been used. The residue that has not yet been extracted is the 

subspace that is orthogonal to the score vector T

vZ .  Projection of each row vector , 1, ,j j m 

onto the unit vector /T

v vZ Z  provides the magnitude of each row vector : /j j v va Z Z in this 

direction. Subtracting /T

j v va Z Z  from the original row vector j  yields 

 

 
2

T T

v v v
j j j

v v

Z Z Z
a I

Z Z
 

 
   
 
 

        (23) 

y

z

c
( , )i iz y

( , )N Nz y

1 1( , )z y

Figure 4 Plot of score variable and output: the 
slope c is determined by least squares 
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See Figure 5. Concatenating the above row vectors vertically, we can obtain the residue of input 
data matrix X:  

 
2 2

'
T T

v v v v

v v

Z Z Z Z
X X X X I

Z Z

 
     

 
 

       (24)  

where the N x N matrix 
2

T

v v

v

Z Z
I

Z

 
  
 
 

 is a projection 

matrix that projects the whole input data matrix X 

onto the subspace orthogonal to the unit vector 

/T

v vZ Z . The residue of input data matrix, X’, does 

not contain any information that has already been 

used for the first score variable. The used 

information, on the other hand, is contained in the 
matrix: 

 

 

1 1

2
,

T T
Tv v v
v

v v
m m

a
Z Z Z

pZ
Z Z

a





   
   

    
   
   

   (25) 

 

where 
2

v

v

XZ
p

Z
  is called the Loading vector 

associated with the first score variable. 
Now that the components of the input and output data associated with the first score 

variable have been filtered out in the new input and output data, ', 'X Y  , the second score 

variable can be determined by repeating Step 1 where the input data matrix X is replaced by X’ 

and the output Y  is by 'Y .  Let 'z  be the second score variable that maximizes the correlation 

between 'X  and 'Y , and 'v  be the unit vector generating the second score variable. Again by 

repeating Step 2, the output prediction is given by ˆ ' ' 'y c v . 

Each iteration of the above procedure extracts a set of variables, including unit vector v , 

score z , and loading vector p , from the residue. These variables, encapsulated in the original 

input data, are found to be significant in correlating the input and to the output. This set of 

variables is referred to as Latent Variables for a single output. Repeating the above steps m* 

times ( * min[ , ]m m N ) until the correlation between the residues ', 'X Y   diminishes (the 

residue becomes totally random and no useful correlation can be found), we can obtain a series of 

latent variables: unit vectors (1), , ( *)v v m , score variables 1 *(1), , ( *)v vmZ Z m , and loading 

vectors (1), , ( *)p p m  as well as the least squares coefficients (1), , ( *)c c m .   Using all these 

latent variables we can predict output y as 

 

 ˆ (1) (1) ( *) ( *)y c z c m z m B x           (26) 

 
where 

*

1

( ) ( )
m

T

i

B c i v i


  .        (27) 

Figure 5  Deflation of input data matrix via 

projection onto the subspace orthogonal to 
the score vector 
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4.2.2 Properties 

 

Latent Variables constructed with the above procedure possess some good properties.  

 
Orthogonality of unit vectors: It is important to check whether the first and the second unit 

vectors are orthogonal to each other. First, the unit vector of the second latent variable is in the 

direction of: 
 

2

2 2 2

' ' ' ( )
T

ov v
v

v

T T T
o ov v v v v v v

v

v v v

Z Z
v X Y X I Y c Z

Z

Z Z Z Z Z Z Z
X I Y X c Z c X I Y

Z Z Z

 
     

 
 

     
           

     
     

  

          (28) 

Now computing the inner product, 
 

 
2 2

' 0
T T T

T T Tv v v v v
v

T v v
v

Z Z Z Z Z
v v v X I Y Z Y

Z Z
Z

   
        

   
   

     (29) 

 
Therefore, the two unit vectors are orthogonal to each other.  

 

Orthogonality of Score Vectors: Similarly, we can show that the two score vectors, vZ  and 

1

'' ' , , '
T

N

vZ z z    , too, are orthogonal to each other.  

 

  ' 2 2
' ' ' ' 0

T
T T T

T T T T T T Tv v v v v
v v v v v v

v v

Z Z Z Z Z
Z Z Z X I v Z X v Z Z X v

Z Z

    
           

        

  

           (30) 

 

 
 




