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2.160 IDENTIFICATION, ESTIMATION, AND LEARNING 

LECTURE NOTES NO. 12 

13. Parametric Identification of Linear Time Invariant Systems 

13.1 Model Structure  
In representing a dynamical system, the first step is to find an appropriate structure of 

the model. Depending on the choice of model structure, efficiency and accuracy of 

modeling are significantly different. The following example illustrates this. Consider the 

impulse response of a stable, linear time-invariant system, as shown below. Impulse 

Response is a generic representation that can represent a large class of systems, but is not 

necessarily efficient, i.e. it often needs a lot of parameters for representing the same 

input-output relationship than other model structures.  
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Therefore, )(qG is represented by only one parameter: one pole when using a rational 

function.  

 The number of parameters reduces if one finds a proper model structure. The 

following section describes various structures of linear time-invariant systems. 
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13.2 Auto-Regressive Model with eXogenous Input (ARX) 

 Consider a rational function for )(qG : 
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where )(qA  and )(qB  are polynomials of q: 
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The input-output relationship is then described as 
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See the block diagram below. 

 
Now let us consider an uncorrelated noise input )(te  entering the system. As long as the 

noise enters anywhere between the output )(ty  and the block of 1b , i.e. )(),(),( tetete ba  

in the above block diagram, the dynamic equation remains the same and is given by: 
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Including the noise term, this model is called “Auto Regressive with eXogenous input” 

model, or ARX Model for short. Using the polynomials )(qA  and )(qB , (4) reduces to 

 

   )()()()()( tetuqBtyqA       (5)   

 

The adjustable parameters involved in the ARX model are 
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Comparing (5) with (11) of Lecture Notes 9 yields 
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See the block diagram below.        

 
Note that the uncorrelated noise term )(te enters as a direct error in the dynamic equation. 

This class of model structures, called Equation Error Model, has a favorable 

characteristic leading to a linear regression, which is easy to identify. 

 

Note that if 0an then )()()()( tetuqBty  . This is called a Finite Impulse 

Response (FIR) Model, as we have seen before. 

13.3 Linear Regression and Optimal Parameter Estimation 

 Based on the ARX model given by (4), let us consider the best prediction of 

output ˆ( )y t given all exogenous inputs up to time t and output observations up to time t-1.  

Noting that the expected value of noise ( )e t is zero, our best prediction is given by 

1 1
ˆ( | ) ( 1) ... ( ) ( 1) ... ( )

bn a n by t a y t a y t n b u t b u t n              (8) 

 

 

   

 



Department of Mechanical Engineering, MIT  H. Harry Asada 

 

 4 

 

where ˆ( | )y t   indicates that this predictor depends on the parameters involved in the 

model. Note that all the parameters to be tuned are linearly involved in this predictor. 

Defining the regression vector associated with this predictor of ARX model as:  
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 (8) reduces to 
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Note that the predictor )(ˆ ty  is a scalar function of  

  )(t : a known vector, and  

     : adjustable parameters. 

)(t does not include any information of  . The known and unknown components are 

separated, and  is linearly involved in the predictor. This is referred to as a Linear 

Regression. 

 

The parameter vector  can be tuned easily from experiment data. Suppose that data 

(1), , ( ), a bN N n n   have been given. We want to find the parameter vector  such 

that it minimizes the squared error: 
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This is a standard Least Squares solution. 

13.4 Auto-Regressive Moving Average Model with eXogenous Input 
(ARMAX) and Noise Dynamics 

Linear regressions can be obtained only for a class of model structures. Many others 

cannot be written in such a manner where a parameter vector is linearly involved in the 

predictor model. Consider the following input-output relationship: 
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This model structure consists of the Moving Average part (MA), )()( teqC , the Auto 

Regressive(AR) part, )()( tyqA , and the eXogenous input part (X). This model structure 

is called an ARMAX model for short. An ARMAX model cannot be written as a linear 

regression.  

 One of the major differences between ARX and ARMAX is that the uncorrelated 

noise ( )e t directly enters the system along the forward path in the ARX model, while it 

goes through its own dynamics (moving average) in the ARMAX model. It is important 

to quantify such noise dynamics by extracting some structure elucidating how noise 

influences the system. This can be accomplish by separating such a structure from a 

totally unpredictable uncorrelated random process ( )e t . 

 Consider that output ( )y t comes from both deterministic input ( )u t through a 

deterministic system ( )G q  and a random process ( )v t . 

 

 

 

 

 

 

 

 

 

 

To model v(t) we assume that v(t) comes from a dynamic process H(q) driven by a 

totally unpredictable random process e(t) 
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Depending on model structure the two transfer functions ( ), ( )G q H q may take 

different forms.  

13.5 Prediction 

We address system identification problems based on the framework of Prediction-Error 

approach. To this end let us first obtain a predictor for the model given by (17).  

If we know )(qG and )(qH , how can we best predict output )(ty based on output 

observations up to and including 1t ? Since ( ) ( )G q u t  is deterministic, this prediction 

problem is basically equivalent to predict )(tv  

 

                          )()()()()()( tuqGtyteqHtv                                    (18)  

)()()()()( teqHtuqGty 
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e(t)= uncorrelated zero mean 

value random process (statistically 

independent) 

v(t) includes measurement 

noise and process noise 

(disturbances) 
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based on observation of v up to 1t , 1)(  tssv . 

 

Prediction of v  

Without loss of generality we assume )(qH is monic. 
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Let )(xfe be the probability density function (PDF) of random variable e. 

Replace this by  
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Therefore, the most probable value of )(tv , given )1( tm , is the one for which the PDF 

 ( 1)ef x m t   takes its maximum. 

….The maximum a posteriori (MAP) prediction. 
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This is called “One-Step Ahead Prediction Model”. 

 

The Prediction Error: 
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This variable )(te represents the part of )(ty that cannot be predicted from past data. So, 

the one-step ahead prediction model exploits all usable information contained in the 

observations, leaving only the “garbage” ( )e t . 

 

Now we define the goal of our system identification problem is to find G(q) and H(q) 

from input-output data.  

In Kalman filter, two separate noise sources, i.e. process noise and measurement 

noise, were considered. However, identifying the two noise characteristics separately is 

difficult or infeasible for many practical applications. In the following we will consider 

an aggregated noise model originated in a single random process. 

 

13.6 Pseudo-linear Regressions 

The one-step-ahead predictor for the above ARMAX model is given by  
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This cannot be written in the same form as the linear regression, but can be written in a 

similar (apparently linear) inner product.  Multiplying ( )C q to both sides of (25) and 
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Then (25) reduces to    ),()(ˆ tty T                (29) 

 

Note that ),(  t includes  and therefore depends on . Strictly speaking (25) is not a 

linear function of  : A Pseudo Linear Regression 

 In system identification we want to find   from data  ( ), ( ) |1NZ y t u t t N    . 

This problem is now nonlinear, and there is no closed-form solution, unlike the least 

squares solution given by (11) for linear regressions. However, the pseudo-linear 

formulation allows us to solve the problem by repeatedly using the least squares solution.  

 

This is called Extended Least Squares Algorithm (We assume ,a b cn n n  for simplicity): 

i). Set i = 0 and 1, , 0
cnc c  , solve the ( )a bn n -dimensional Least Squares problem to 

obtain initial estimates of ( ), ( )A q B q .  

ii). Using these estimates obtain the initial estimate of prediction error 

 (0) (0)ˆ ˆ( 1, ), , ( , ),c at t n n t N       .       (30) 

iii). Form the pseudo-linear regression using the prediction error in the previous step: 
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and solve the ( )a b cn n n  -dimensional Least Squares problem. Using the updated 

( ), ( ), ( )A q B q C q , update the prediction error estimate ( 1) ( 1)( , ), , ( , )i i
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iv). Set 1i i  , and repeat the computation for M times. 
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13.7 Output Error Model Structure 

There is another set of model structures called Output Error Model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let )(tz be undisturbed output driven by )(tu alone, 

 

                         

       

 

 

 

 

 

 

Note that )(tz is not an observable output. What we observed is )(ty  
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The parameters to be determined are collectively given by 
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Note that )(tz is a variable to be computed (estimated) based on the parameter vector  ; 

therefore, ),( tz .  The one-step-ahead predictor is 
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where ),(  t is 
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Therefore this is a Pseudo-Linear Regression.  

 

Box-Jenkins Model Structure 

 

This simple output error (OE) model can be extended to the one having an ARMA model 

for the error dynamics 
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13.8 Consistent and Unbiased Estimation: Preview System ID Analysis 
 
  The Extended Least Squares algorithm works well for most of ARMAX systems. 

However, for more complex systems, including output error model, a question arises 

whether we can obtain the correct estimate. This section briefly describes some important 

issues on model structure in estimating parameters involved in the model. Details will be 

discussed later.  

  Let NZ  be a set of data obtained over the period of time: Nt 1 . One of the 

critical issues in system identification is whether the estimated model parameters N̂  

based on data set NZ  approaches the true values 0 , as the number of data points N tends 

to infinity. Several conditions must be met to guarantee this important property, called 

“Consistency”. First, the model structure must be the correct one. Second, the data set 
NZ  must be rich enough to identify all the parameters involved in the model. 

Furthermore, it depends on whether the noise term )(tv  entering the system is correlated, 

which estimation algorithm is used for determining N̂ , and how the parameters of the 

model are involved in the predictor )|(ˆ ty .  
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Consider the following squared norm of prediction error:  
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Assume that the one-step-ahead predictor is given by: 
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Let us apply the Least Square Estimate (LSE) minimizing the mean squared error 

),( N

N ZV  : 

 

  )()(),(minargˆ 1
NfNRZV N

N

LS

N


 


     (40) 

 

where 

  
T

N

t

tt
N

NR )()(
1

)(
1




  and 



N

t

tyt
N

Nf
1

)()(
1

)(     (41) 

Suppose that the model structure is correct, and real data are generated from the true 

process with the true parameter values 0 : 
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Whether the estimate 
LS

N̂  is consistent depends on the data set and the stochastic 

properties of the noise term )(0 tv . Substituting the expression of the true process into 

)(Nf  yields 
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To be consistent, i.e. 0
ˆlim  
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N
N

, the following conditions must be met: 

(I)   Matrix )(lim NR
N 

 must be non-singular. The data series, ),3(),2(),1(  , must 

be able to “Persistently Excite” the system. 

 

(II) 0)(*lim 
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Nf
N

. This can be achieved in two ways: 

Case A: )(0 tv  is an uncorrelated random process with zero mean values. Then, )(0 tv  

is not correlated with ),3(),2(),1(  tytyty  and ),3(),2(),1(  tututu , 

i.e. all the components of )(t . Therefore, 
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Case B: The model structure is FIR, i.e. 0an , and inputs ),2(),1(  tutu  are 

uncorrelated with )(0 tv . The noise term )(0 tv  itself may be correlated, for example, 

)(),()( 00 teqHtv  . If the model structure is FIR with uncorrelated inputs, then 

)()( 0 tvt   are uncorrelated, hence 0)(*lim 


Nf
N

. 

The above two are straightforward cases; Consistent estimates are guaranteed with simple 

LSE, as long as the data are persistently exciting. Care must be taken for other model 

structures and correlated noise term. For example, if ARMAX model is used, the linear 

regression cannot be used, and the output sequence involved in )(t  may be correlated 

with )(0 tv : 

(45) 

For output error models, however, the pseudo-linear regressor does not include the output 

( )y t , thereby,  no correlation with the noise. The variables there are estimated noise-free 

state variables, ( )z t , called “Instrumental Variables”. It is known that estimation using 

instrumental variables provides no bias. 

 
 

13.9 State Space Model 
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 )(tw and )(tu are process and output noises, respectively, with zero mean values and 

covariance matrices: 

 

)()]()([

)()]()([

)()]()([

12

2

1







RtvtwE

RtvtvE

RtwtwE

T

T

T







           (48) 

 

 

This may be correlated with  
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Using forward shift operation q , we can rewrite (46) 

as 

 

)()()()()]([ twtuBtxAqI    

 

Therefore the output )(ty is given by 

 
   

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )y t C qI A B u t C qI A w t v t    

 
    

 (49)  

 

from (47) 

 

Comparing this with                                      (2)   (2) 

 

(50) 

 

 

 

 

 

 

Innovations representation of the Kalman filter. 

 Let ),(ˆ tx be the estimated state using the Kalman filter. 

 

The prediction error given by 

 

(51) 

 

 

 

represents the part of )(ty that cannot be predicted form past data.  This part is called, the 

“innovation”, denoted )(te . Using this innovation, K-F is written as 

 
ˆ ˆ( 1, ) ( ) ( , ) ( ) ( ) ( ) ( )x t A x t B u t K e t           (52)   

)(),(ˆ)()( tetxCty         (53)               

 

The covariance of innovation is 

 

 

 

 

 

 

)(te

Usually 0)(12 R  

  

Equation Error 

Model w/  

OE Model 

    (54)  

 

Error covariance of 

state estimation 

and  are 

not correlated 

)(),()(),()( teqHtuqGty    

)()()],(ˆ)()[(),(ˆ)()( tetvtxtxCtxCty    

])]()]([ 11 wAqIBuAqI     
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Combining (52) and (53), and comparing it with (2), 

 

   )(),()(),()( teqHtuqGty       (55) 

 

     
IKAqICqH

BAqICqG









)()]()[(),(

)()]()[(),(

1

1




   (56) 

 

This shows the relationship between the state space model and the input-output model. 

They are connected through the innovation process. 

 

 

            (57) 

 

 

 

 

 

 

13.10  Combined Linear and Nonlinear Models 

 

We often need to deal with nonlinear dynamical systems, to which the above linear time-

invariant model structures cannot be applied. However, a class of nonlinear dynamical 

systems can be represented as a combination of the above LTI model and nonlinear 

algebraic functions discussed in Part 2. In particular, if the system can be divided into a 

linear dynamical subsystem and a nonlinear algebraic subsystem, the following model 

structures can be used: 

 

a) Hammerstein Model 

 

 

 

 

 

 

b) Wiener Model 

 

 

 

 

 

 

Furthermore, if unknown parameters are linearly involved in the nonlinear algebraic 

maps, such as radial-basis functions with fixed center points, the predictor is given by a 

linear regression. 

 )()(),(ˆ)( tKetButxAqI  

)()()()(),(ˆ 11 tKeAqItBuAqItx    

)()()()()()( 11 tetKeAqICtBuAqICty  
 

f [u(t)] 

Nonlinear 

Map f (u) 

Linear 

Dynamic 

Model 

u(t) y(t) 
Hammerstein Model 

Nonlinear 

Map f (z) 

u(t) y(t) 
Wiener Model 

Linear 

Dynamic 

Model 


