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2.160 IDENTIFICATION, ESTIMATION, AND LEARNING 

LECTURE NOTES NO. 15 

In this part of the course, we will consider representation of nonlinear functions. 

In engineering problems we often need to deal with functional relationships that 

are nonlinear. Estimation and identification of nonlinear dynamical systems are 

challenging. It is often more tractable if we can divide the system into a nonlinear 

algebraic function and a linear dynamical subsystem, like Hammerstein model and 

Wiener model. In this chapter we will address how such a nonlinear algebraic function 

can be represented in a structure that is convenient for identification from sample data.  

16. Nonlinear Models

16.1 Nonlinear Black-Box Models 

Suppose that there is a nonlinear functional relationship between input vector   and 

output y (without loss of generality, we assume the output is scalar in this section). Let 

)(kg , k = 1,…, m, be a set of nonlinear functions, e.g. sine and cosine functions.

Consider to approximate a nonlinear function y(by a linear combination of nonlinear 

functions: 

)(ˆ
1





m

k

kk gy   (1) 

Functions gk()’s can be viewed as “bases” in m dimensional vector space and k ’s can 

be treated as coordinates associated with the bases. 

 There are a number of Basis Functions that can be used for (1). They are classified into: 

 Global basis functions

 Fourier series

 Volterra series

 Local basis functions

 Neural networks

}  Varying over a large area in the variable space

 Representing global features

Significant variation only in a local area 
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 Radial basis functions 

 Wavelets 

Local basis functions are powerful tools for capturing local features and representing a 

nonlinear function with locally-tunable resolution and accuracy. Over the last few 

decades, local basis functions have been investigated extensively. They have been 

applied to a number of system identification, learning, and control problems. We will 

focus on local basis functions in this chapter. 

16.2 Local Basis Functions 

We begin with a problem to approximate a scalar nonlinear function, 

RxRyxgy  ,),(0 , with a group of basis functions, ),;( kkk xKg  , each of 

which covers only a local interval of axis x with parameters  k and 
k  . See the figure 

below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All the basis functions )(kg  , k = 1,…,m are generated from a single mother function of 

a single input variable, i.e. univariate: ),;( kkxK  . 
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                                                            Scale, dilation 

where parameter k  determines the center position,  

and parameter k  determines the scale of the local 

basis function. 
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Varying only in a local area 
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Placing these local basis functions at m different points along the x axis with appropriate 

scale factors, we want to approximate the original nonlinear function to the following 

form: 

                             ),;()(
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A simple case is to use the same Gaussian bell functions, i.e.  k , and place it at m 

equally-spaced points between x = a and x = b, where the given nonlinear function is 

defined: bxa  . It can be shown based on Function Approximation Theory that a 

large class of nonlinear functions can be approximated to any accuracy with this group of 

Gaussian bell functions. Not only Gaussian bell functions, but also many other basis 

functions satisfying mild conditions can be used for the local basis functions.  

 

Function Approximation Theory 

 

For 0 , there exists m such that 
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Many mathematicians, including Kolmogorov, have worked on this problem and have 

extended the approximation throry to a large class of nonlinera functions, g0(x), and a 

large class of basis functions. Professor Tomaso Poggio has written an excellent survey 

paper on this topic.
1
 His paper is available at the instructor’s office.  

 

The challenge of this function approximation is to minimize the number of basis 

functions while approximating a given nonlinear function to the same accuracy. It is 

interesting to know that the number of basis functions reduces quite significantly when 

they are placed more effectively at specific areas rather than placing them at fixed grids, 

 

 

Features of local basis functions 

 Multi-resolution 

 Locally tunable 

 (More stable in tuning) 

 

 

 

 

 

 

 

                                                
1
 Poggio, T. and F. Girosi. Notes on PCA, Regularization, Sparsity and Support Vector Machines, 

CBCL Paper #161/AI Memo #1632, Massachusetts Institute of Technology, Cambridge, MA, April 

1998. 
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http://cbcl.mit.edu/cbcl/publications/ai-publications/1500-1999/AIM-1632.ps
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There are a number of local basis functions that have been used for diverse applications. 

They can be classified into three types. 

 

 

1) Linear Combination type 
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used for the perceptron multi-layer neural network. 

All the regression vectors   involved in the  

hyperplane are mapped to the same value of kx ; 

The bases function )( kk xg is not localized. 

 

 

 

 

 

 

 

 

 

2) Distance type 
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Locallized. Radial Basis Functions 

 

 

 

 

 

 

3) Product type 
1 1 2 2
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Wavelets 

Need a large number of basis functions 
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16.3 Non-Adaptive Tuning of Local Basis Function Networks 

In the neural network community, parameter tuning or parameter estimation is called 

learning or training. ( They tend to use colorful English!) 
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Data (Training Data) 

Regression and corresponding true outputs 

)()1( N              )()1( Nyy   

 

In the non-adaptive tuning problem under consideration, the scale parameters k  and the 

location parameters k are fixed; only coordinates k  are learned from the input-output 

data 
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                                                       Pre-determined                    A type of linear regression 

 

This is a linear problem. The Least Squares estimate is applicable. 
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Collectively arranging this vector for all the training data, 

             

 

 

         (9’) 

 

 

 

 

 

 

Φ has been used for  in linear systems. 
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We use this for the above nonlinear problem, since there is no fundamental difference 

between the two. 

The problem is to find that minimizes the squared error of the above predictor 

compared with the true values (training data) . 

       (10) 

The solution is  

         (11) 

The Recursive Least Square (RLS) algorithm is also applicable. RLS is particularly 

useful for on-line learning as well as for dealing with a large number of training data. 

Substituting (11) into (9) yields 

 

       (12) 
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where  called the equivalent Kernel of the basis 

function. 

 

16.4 Adaptive Tuning Methods for Radial Basis Function networks 

   
Now we consider adaptive tuning methods that 

 Allow to tune and (scale and location parameters) together with the 

coordinator by using both and , the training data; and 

 Allow to allocate local basis functions more effectively to areas needing higher 

resolution. 

Since , and are non-linearly involved in (9), adaptive methods are highly non-

linear. 

 

The following is an example of adaptive method: Radial Basis Function (RBF) Networks 

 

The formula of RBF network is given by: 
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where the mother basis function is the Gaussian bell, multi-quadratic function. The bias 

term can be treated as a special case of . 

Question: How can we determine and ? 

At fixed grid points More basis functions at more densely 

populated areas 

Allocation of the basis functions is a type of clustering problem or a vector quantization 

problem. 

The k-Means Clustering algorithm is a well-known technique. 

Problem: 

Given the number of clusters (basis functions), m; initial locations of the m center 

points, 1[0] [0]m  ; and data )()1( N  ; Find optimal center points that minimize 

the mean squared distance between each center point k and individual data points

)(i involved in the same cluster, k. 

Algorithm 

Set iteration number l to 1. Given initial center 

points,` 

Step 1.  Find the nearest center for each data 

point )(i  and store the results in an mN   

matrix  ijqQ  , whose element is defined by 

1
1 arg min ( ) [ ]
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Step 2.  Compute the centroid of the data points )(i  classified to the same cluster 
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Step 3. Set 1   and repeat steps 1-2 until the mean squared distance converges 

to a local minimum. 
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The scale (dilation) parameter k , called a receptive width, determines the

smoothness of the approximation function as well as data fitting accuracy. 

A heuristic method for determining the receptive width (variance) is given by 
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Selection of k is a trade-off problem between fitting accuracy and smoothness. It is

interpreted as the degree of generalization. 
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Set  and repeat 
Compute the centroid of the data 

points )(i  classified to the 

same cluster, [ 1]k   in (16) 

(18)


