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2.160 IDENTIFICATION, ESTIMATION, AND LEARNING 

LECTURE NOTES NO. 7 

7. Extended Kalman Filter and Unscented Kalman Filter 

7.1 Nonlinear Process Dynamics 

In many practical problems, the process dynamics are nonlinear. 

 

Figure 7.1 Kalman filter for nonlinear systems 

If the process is nonlinear but smooth, its linearized approximation may be used for 

the process model. 

 

Consider a non-linear, continuous system 

      dim)(,,  ntwtuxfx             
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f (.), and h(.): known but non-linear, differentiable functions 

u : input (deterministic forcing term; assumed zero) 

w , v : uncorrelated process and measurement noises 

   0twE ,    0tvE  

       









stQ

st
swtwE T

0
)(        










stQ

st
svtvE T

0
)(      0)( svtwE T  

 

The original Kalman filter is not applicable to this class of nonlinear systems. This 

section describes the extension of Kalman Filtering to nonlinear systems. 
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Approaches : 

7.2 Linearize the non-linear system along a trajectory to track  

…Linearized Kalman Filter 

7.3 Linearize it around the estimated state in real-time for covariance update 

+ nonlinear output prediction and state transition 

…Extended Kalman Filter. 

7.4 Use a statistical sampling technique for covariance update  

+ nonlinear output prediction and state transition  

…Unscented Kalman Filter 

 

7.2  Linearized Kalman Filter 

Figure 7.2 Nominal trajectory 

 

  atx *  nominal trajectory in the state space satisfying the noise-less state equation: 

          ttxftx ,**                   (2) 

           absence of process noise 

 

Consider deviation, )(tx , from the nominal trajectory 

      )()()( * txtxtx          (3) 

      )()()( * txtxtx           (4) 
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where 

 

 

 

 

 

 

 

 

 

 

Combining (4) and (5) 
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Similarly, from (1), 

 

                                      

 

 

 

 

 

 

 

 

 

Note that the above linearized system (7), (8) with )(tF and )(tH are in the same 

form as that of the original Kalman filter: linear time-varying systems. 
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7.3  Extended Kalman Filter 
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Figure 7.3 Actual, estimated, and nominal trajectories 

 

Namely, matrices F and H are evaluated at xx ˆ , the estimated values of the state in 

real time, rather than its nominal values. Note that  txF ,ˆ and  txH ,ˆ cannot be 

pre-computed in off-line. 

 

For estimating the output, however, we do not have to use the linearized model; the 

nonlinear output function, eq.(1), can be used: 

      ttxhty ),(ˆ)(ˆ           (10) 

The state propagation, too, can be replaced by the original nonlinear function: ˆ( ( ))f x t .  
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Compute Kalman Gain 

 

Riccati Differential Eq. 

 

Update State Estimate with 

new measurement 

 

Measurement y 

State Estimate  

Update the linearized model: 

 

Initial Conditions: P0 

Initial Conditions:  

Figure 7.4 Extended Kalman Filter 

Actual Traj. 

Estimated  

 

Nominal (predetermined) 

state 

time 

With the measurement of the actual process, the 

estimated trajectory is deemed to be more 

accurate. Use the state )(ˆ tx estimated in 

real-time for linearizing the dynamics: 

),ˆ(
ˆ

txF
xxx

f





 

),ˆ(
ˆ

txH
xxx

h





 



Department of Mechanical Engineering, MIT  H. Harry Asada 

 5 

modifications, (9) and (10), for better use of the nonlinear dynamics. See Figure 7.4. A critical 

issue of this Extended Kalman Filter is instability. As estimated state x̂  deviates from the 

true state, the linearized model becomes inaccurate, which may lead to an even larger error in 

state estimation. Care must be taken in implementing the extended Kalman Filter. 

 

7.4 Unscented Transform 

  Although the Extended Kalman Filter works satisfactorily for many applications, it is 

known that it performs poorly when the system is highly nonlinear, exhibiting large 

deviations from the piece-wise linearized dynamics. Since the covariance update of the 

Extended Kalman Filter is based on the linearized model with  

xxx
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 ,         (11) 

the resultant error covariance P does not reflect the true value. In particular, it is known that 

the Extended Kalman filter tends to underestimate the error covariance when the 

Jacobian-based linear model (11) changes rapidly, resulting in a smaller Kalman gain and 

insufficient state update. This often leads to divergence of the Extended Kalman filter. See 

Figure 7.5 below. 

 

Figure 7.5 Mean and covariance simulated for a) the true nonlinear system, b) EKF using 

linearized state transition matrix A, and c) Unscented Transformation. From Eric A. Wan and 

Rudolph van der Merwe, “The Unscented Kalman Filter for Nonlinear Estimation” 
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This problem can be solved by using Unscented Kalman Filter by Julier and Uhlmann 

[1997], which estimates more accurate error covariance despite prominent nonlinearity. The 

key idea is to estimate the error covariance based on a special set of sample points, termed 

“sigma points”, which propagate directly through the original nonlinear model, rather than 

computing it based on the covariance update and propagation formula, (4-41) and (4-45), or 

the Riccati equation, which need the linearized process model, (4-5) and (4-6) or (11). Sigma 

points are an effective sampling technique that provides accurate mean and covariance values 

with a minimum number of sample points. These sigma points are propagated through the 

nonlinear dynamic model to estimate the error covariance of 
1|

ˆ
t tx 

. This results in a filter 

capturing more accurate mean and covariance despite the nonlinearity. Furthermore, this 

Unscented Kalman Filter does not require to analytically compute the Jacobians, which for 

complex systems is difficult to perform. 

 
Figure 7-6 Gaussian distribution and sigma points 

To begin let us consider a simple scalar case. Assume that a scalar random 

variable x X has a Gaussian distribution, which is completely characterized by 

mean x and variance 2 . Take three sample points, called “sigma points”, as follows: 
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where  is a parameter of sigma points to be tuned, and iW is weight of the i-th sigma 

point. See Figure 7-6. The weighted mean and variance of these samples agree with 

the mean and variance of the original distribution of x. 
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Note that y Y is a random variable as x is an instantiation of random variable X; 

x X . Construct a set of sample points in y that correspond to the individual sigma 

points in x. 

( ), 0,1,2i iy f x i             (15) 

Compute the weighted mean and variance of the transformed sigma points: 

{ | 0,1,2}iy i  . 
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The weighted mean of the sigma points transformed through the nonlinear analytic 

function approximates the true mean to the third order, and that of the covariance to 

the second order. [A problem in PS]. In other words, the transformed sigma points 

{ | 0,1,2}iy i  approximate the true distribution of Y to. 

2 2[ ] (4), [( [ ]) ] (3)sample sampley E y E y E y    
      (17)

 

For a general n-dimensional multivariate Gaussian distribution,  
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where 1nx  and xP is a n by n covariance matrix, the above sigma points can be 

extended to the following form.  
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Figure 7.7 Sigma points for n-dimensional Gaussian distribution 

 

Since the covariant matrix is a real, positive semi-definite matrix with 

non-negative eigenvalues, 2 0, 1i i n   , it can be decomposed to: 
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and iv is the i-th unit eigenvector. Using these unit eigenvectors and eigenvalues, we 

can define (2n+1) sigma points in the n dimensional space. 
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See Figure 7.7. As before let us propagate the (2n+1) sigma points through the 
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nonlinear function to obtain (2n+1) sample points in y that correspond to the 

individual sigma points in x. 

( ), 0,1, ,2i iy f x i n            (23) 

For these propagated sample points { | 0,1, 2 }iy i n , compute the weighted mean and 

covariance: 
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Again by setting 2   we can show that these sample mean and sample covariance 

can approximate the true mean and covariance at least up to the second order.  

,[ ], [( [ ])( [ ]) ]; 2T
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This sampling method is called Unscented Transform. 

 

7.5 Unscented Kalman Filter 

 

Now that the unscented transform can approximate the mean and covariance up 

to the second order, let us apply it to Kalman filter. Consider a discrete-time, 

nonlinear state transition equation: 

 

1 ( , , )t t t tx f x u t w              (26) 

 

and a nonlinear observation equation: 
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where tw and tv  are zero-mean, uncorrelated, Gaussian process noise and 

measurement noise, respectively. 
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where the unit eigenvectors and eigenvalues are those of the a posteriori error 

covariance:  
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1 1 1 1 1
ˆ ˆ[( )( ) ]T

t t t t tP E x x x x                (29) 

 

Propagation: 

Let *

| 1

i

t tx  be the transformed sigma point of the i-th sigma point in the state space 

through the deterministic part of the nonlinear state transition equation. 
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The predicted mean of the a priori state estimation based on the (2n+1) samples is 

given by 

 

2
*

| 1, | 1

0

n
i

t t sample i t t

i

x W x 




           (31) 

 

and the predicted covariance is computed from (26) and (31) as 
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where the process noise 1tw   is uncorrelated with 1 | 1
ˆ,t t tx x   and 1 1( , , 1)t tf x u t    is 

approximated to | 1,t t samplex  . Note that the predicted mean and covariance are correct up 

to the second order. For brevity, the subscript “sample” will be dropped hereafter. 

 

Update: 

Similarly, a new set of sigma points | 1, 0, ,2i

t tx i n   are sampled for 

representing the distribution of | 1t tx   by computing the eigenvalues and eigenvectors 

of | 1t tP  . These sigma points are mapped to output observations through the 

deterministic part of the observation equation: 
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The predicted observation is computed as 
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 The Kalman gain, too, can be computed from the samples. To this end, consider the 

following output estimation covariance, called the Innovation covariance, 
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Note that the inverse of this innovation covariance, 1

yP , is involved in the Kalman 

gain, (5-38). The rest of the Kalman gain is computed as 
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This is called the cross correlation matrix. Therefore, the Kalman gain is given by 
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Both innovation covariance and cross correlation matrices can be evaluated by using 

the sigma points. The true output ty is not available, but from (34) it can be written as 
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Using this in (35) 
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Similarly, the cross covariance is evaluated as 
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The recursive computation of Unscented Kalman Filter is summarized below. For brevity, subscript
sample is omitted. 

a) Given
1

ˆ
tx 

and 
1tP

, sample sigma points by computing eigenvalues and 

eigenvectors of 
1tP
, (28), 

b) Propagate the sigma points through the nonlinear model to obtain *

| 1

i

t tx  , (30),

c) From the (2n+1) propagated sigma points compute the mean and covariance,

| 1
ˆ

t tx 
, | 1t tP  , (31) and (32),

d) Sample again (2n+1) sigma points
| 1

i

t tx 
for | 1t tP  , 

e) Transform the propagated sigma points to output estimate i

ty  based on the
nonlinear measurement equation, (33), and compute the estimated output ˆ

ty , 
(34), 

f) Evaluate the innovation covariance and the cross covariance,
yP and 

xyP , (39)
and (40), by using (2n+1) samples of propagated output estimates, 

g) Update the state estimation with the Kalman gain given by (37):

| 1
ˆ ˆ ˆ( )t t t t t tx x K y y  

h) Update the a posteriori covariance   P t  using (43). Set t = t+1, and repeat the process.

Covariance Update: 

, this covariance update law can be rewritten without using Ht . 

(41) 

is inserted in the last expression. SinceWhere PyPy
−1 = I   Kt = P Ht

T Py
−1  , 

(42) |t−1

From eqs. (32), (37), and (39), this can be computed using the sample points. 

(43) 

tRecall P = t(I − KtHt )P|t−1

Pt t= (I − KtHt )P|t−1 = Pt|t−1 − tKtHtP|t−1 = Pt|t−1 − tKtPyPy
−1HtP|t−1

t|t−1

Pt t= P − KtPyKt
T

Pt ,sample t|t−1,sample≅ P − KtPyKt
T

t t| 1




