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2.160 IDENTIFICATION, ESTIMATION, AND LEARNING 

LECTURE NOTES NO. 3 

3. Random Variables and Random Processes

So far we have dealt with “deterministic systems” for developing parameter estimation algorithms. 

This terminology, however, is misleading, since all systems are to some extent uncertain and noisy. 

If we can quantify uncertainties and utilize the quantified uncertainties for estimation, we would be 

able to do better or more rigorously. Within the framework of deterministic systems we did not use 
such information about uncertainties; we simply left it as prediction error. 

An alternative approach is to quantify uncertainty for better prediction, estimation, and 
control. This requires modeling an uncertain process as a dynamical process perturbed by noise and 

characterizing the noise properties. The figure below illustrates a dynamical system where the plant 

is disturbed with process noise and the observed output is corrupted with measurement noise.  

Figure 3-1 Dynamic process perturbed by noise 

Objective of modeling uncertainties: 

 Use stochastic properties of the process for better estimating parameters and state of

the process, and

 Better understand, analyze, and evaluate estimation mechanisms.

Theoretical development of estimation, identification, and learning is heavily involved in 

quantification of uncertainties. In this chapter we begin with a quick review of probability, random 

variables, and random processes.  

3.1 Random Variables 

You may have already learned probability and stochastic processes in some subjects. The 

following are fundamentals that will be used regularly for the rest of this course. Check if you feel 

comfortable with each of the following definitions and terminology. (Check the box of each item 

below.) If not, consult standard textbooks on the subject. See the references at the end of this 

chapter. 

The most rigorous way of introducing probability, random variables, and random processes 
is to begin with set theory,σ-field, and Lebesgue measure. We leave these topics to references and 
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focus on the only basic math that we will directly use in the following sections. Later on we will 

discuss more on random processes as needed in the identification sections. 

1) Random Variable

X: Random variable is a function that maps every point in the sample space to the real axis line. 

2) Cumulative distribution function (CDF), FX(x), and probability density function (PDF)

fX(x);

)(Prob)( xXxFX   (1) 

( ) ( )X X

d
f x F x

dx
  (2) 

In the statistics and probability literature, the convention is that capital X represents a 
random variable while lower-case x is used for an instantiation/realization of the random variable. 

The following are basic properties of CDF and PDF. 

lim ( ) 1X
x

F x


 , ( ) 1Xf x dx





For discrete random variables, we use the following Probability Mass Function (PMF): 

( ) Prob.( )X i ip x X x  (3) 

3) Joint probability densities

Let X and Y be two random variables 

For discrete random variables: 

( , ) Prob.( , ,  simultaneously)XY i j i jp x y X x Y y  

(5) 

4) Statistically independent (or simply Independent) random variables

For continuous random variables: fXY(x,y) 

(4) 
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fXY(x,y)= fX(x) fY(y)  for all x and y (6) 

A similar expression can be given for discrete random variables. In the following only continuous 

random variables will be shown. 

5) Conditional probability density

First consider the cumulative probability distribution of X when another random variable Y 

takes y Y y y   . This can be written as: 

 
( , )

Prob ,  given 
( )

x y y

XY
y

y y

Y
y

f x y dxdy
X x y Y y y

f y dy






     

 


Dividing both numerator and denominator by y  and letting 0y   yield the conditional 

probability density: 

( , )
( | )

( )

XY

X Y

Y

f x y
f x y

f y
 (7) 

= (Joint probability density divided by Probability density of Y at y) 

If X and Y are independent, 

( , ) ( ) ( )
( | ) ( )

( ) ( )

XY X Y
XX Y

Y Y

f x y f x f y
f x y f x

f y f y
   (8) 

Occurrence of Y = y does not influence the occurrence of X = x. 

6) Bayes Rule

( ) ( )
( | )

( )

XY X

X Y

Y

f x f x
f x y

f y
 ( | ) ( ) ( , ) ( | ) ( )Y XY XX Y Y X

f x y f y f x y f y x f x  (9) 

7) Marginal Probability

( ) ( , ) , ( ) ( , )X XY Y XYf x f x y dy f y f x y dx
 

 
    (10) 

8) Expectation

Expected value of X dxxxfXE X )(][ 




  (11) 

  mean, average 

For discrete random variables, 


i

ii xpXE ][ where ( )i X ip p x

9) Variance

   22222 )(][])()(2[]))([( XEXEXEXXEXEXEXEVarX  (12)
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10) Moment 

k-th moment of X 

[ ] ( )k k

XE X x f x dx





            (14) 

k = 1   mean, k = 2,  k = 3  higher moments 

 

 

11) Normal (Gaussian) Random Variable 
2~ ( , )XX N m  : This means that random variable X has a normal distribution with mean 

mX and variance 
2  

 
The first and second moments completely characterize the distribution. 

2

2

2 2

1 1
( ) exp[ ( ) ]

22

( ) ( )

X X

X X

f x x m

x m f x dx








  

 

      (15) 

 

12) Correlation 
The expectation of the product of two random variables, X and Y, is called “Correlation”. 

 








 dxdyyxfxyXYE XY ),(][       (16) 

                                                                       Joint probability 
If X and Y are independent 

 

[ ] ( ) ( )

( ) ( ) [ ] [ ]

X Y

X Y

E XY xy f x f y dxdy

x f x dx y f y dy E X E Y

 

 

 

 



  

 

 

     (17) 

 

Note that, although the correlation is zero, the two random variables are not necessarily 

independent. 
 

13) Orthogonality 

X and Y are said to be orthogonal, if the correlation is zero    E [XY] = 0             (18) 
 

14) Covariance 

 
Covariance of X and Y = cov(X,Y) = E [(X-mX) (Y-mY)]           (19) 

 

Notice the difference between Covariance and Correlation. Sometimes the terminology is abused in 

literature. For example, “Covariance” resetting of the RLS algorithm with a forgetting factor is not 
covariance. 
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15) Correlation coefficient

cov( , )

var( ) var( )

X Y
XY

X Y

X m Y mX Y
E

X Y


 

    
       
     

 
  


(20) 

3.2 Random Processes 

A Random Process is a family (ensemble) of time functions having a probability measure. 

Random Variable X                     Random Process X(t) 

Figure 3-2 Ensemble of time profiles coming from a random process 

Characterization of a random process 

 First-order densities: 
1( ) ( )X tf x   abbreviated as 

1 1( )Xf x ; 

 Second-order densities: joint probability density fX1X2(x1,x2)

If the random process has some correlation between two random variables X(t1) and X(t2), it 

can be captured by the following autocorrelation: (“auto” means correlation within the same 

single random process) 

2121212121 ),()]()([),(
21

dxdxxxfxxtXtXEttR XXXX  

 (21) 

 If the auto-correlation function depends only on the time difference 21 tt  , it reduces to 

     

    
S1

X(t; S1) 

X(t; S2) 

X(t; Sn) 
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)]()([)( tXtXERXX   )()(   XXXX RR  even function (22) 

Then the process is called “Wide Sense Stationary”. 

Figure 3-3 Probability densities at individual time slices 

Auto-covariance: 

)()(),(

))]()(())()([(),(

2121

221121

tmtmttR

tmtXtmtXEttC

XXXX

XXXX




(23) 

 Higher-order densities

Joint density  fX1X2…. Xn (x1,x2 ,…,xn) 

)]()()([ 21 ntXtXtXE  n-th order

Total characterization: If joint densities of X(t1) , X(t2),  ….., X(tn) for all n are 

known, the random process is said to be totally (completely) characterized. … 

Unrealistic. 

3.3 Multivariate Random Processes 

In the previous section we characterized properties of a single random process. Now we 

extend it to multivariable random processes. Recall a family of time profiles, called an 

ensemble. Each of these waveforms is a realization of random process X(t). Such a random 

fX1 fX2 fX3 

x(t1) x(t2) x(t3) 
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waveform can be seen in your oscilloscope, when you increase the gain of a ground signal. 

An ensemble of waveforms may be considered as a large collection of the same 

oscilloscope. If you have one hundred of the same type of oscilloscope, you have 100 

waveforms of the ground noise. They come from the same ground signal, but the 

waveforms are all different. 

In Section 3.2, stochastic properties of a single random process were described with the first 

and second order densities and auto-correlation functions. Now let us extend it to multiple 

random processes, say X(t), Y(t), and Z(t), and characterize their properties. In the 

oscilloscope analogy, you can think about multi channels of signals, say channel 1 and 

channel 2, shown on a single oscilloscope display. See Figure 3-4. If there are a large 

number of the same oscilloscopes displaying both channels, an ensemble of multivariate 

random processes can be generated.  

Let fXYZ(xt,yt,zt) be the first-order density of a multivariate random process, X(t), Y(t), and 

Z(t). The covariance is defined as  

Covariance: Ensemble mean 

 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

X

XYZ Y X Y Z

Z

X t m t

C t E Y t m t X t m t Y t m t Z t m t

Z t m t

  
  

      
    

  (24) 

If  mX = mY = mZ = 0 

     
     
      


















)()()()()(

)()()()()(

)()()()()(

)(
2

2

2

tZEtZtYEtZtXE

tZtYEtYEtYtXE

tZtXEtYtXEtXE

tCXYZ  (25) 

Second-order density: 

Taking two time slices, t1 and t2, as shown in the above figure, the joint probability 

mass function  is given by: 
1 1 1 2 2 2 1 1 1 2 2 2

( , , , , , )X Y Z X Y Z t t t t t tp x y z x y z

If  mx=my=mz=0, the covariance is given by 

     
     
     


















)()()()()()(

)()()()()()(

)()()()()()(

),(

212121

212121

212121

21

tZtZEtYtZEtXtZE

tZtYEtYtYEtXtYE

tZtXEtYtXEtXtXE

ttCXYZ (26) 

Note that the first order covariance in equation (25) can be viewed as a special case of the 

second order covariance in equation (26); ttt  21 . 
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Reference Textbook on Random processes 

John A. Gubner, “Probability and Random Processes for Electrical and Computer 

Engineers”, Cambridge University Press  2006, ISBN-13 978-0-521-86470-1 

Lonnie Ludeman , “Random Processes - Filtering, Estimation, and Detection”, Wiley 2003, 

ISBN 0-471-25975-6 

Robert Brown and Patrick Hwang, “Introduction to Random Signals and Applied Kalman 

Filthering, Third Edition”, Wiley 1997, ISBN 0-471-12839-2, TK5102.9.B75 
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3.4 Application: Adaptive Noise Cancellation 

Let us consider a simple example of the above definitions and properties of random processes. 
Active noise cancellation is a technique for canceling unwanted noise by measuring the noise source 

as well as the signal source. Consider an airplane pilot talking to an air traffic controller. The pilot 

voice is quite disturbed by the engine noise and other acoustic disturbances. To cancel out the 

acoustic noise, another microphone is used for measuring the surrounding noise. See the figure 
below. A simple method of active noise cancellation is to generate an “anti-noise” signal by 

inverting the sign of the measured noise, and super impose it to the main microphone’s signal, i.e. 

phase-cancellation. This cancellation technique, however, is limited, since we do not know exactly 
how the acoustic noise interferes with the pilot voice. To overcome this difficulty, “adaptive” noise 

cancellation, originated by David Widrow’s research in the 60’s, has been developed. In this system, 

the “interference dynamics” are identified in real time so that the noise may be best canceled out. 

The orthogonality of signals is the key to this adaptive noise cancellation.  

Figure 3-5 Block diagram of Adaptive Noise Cancellation Algorithm 

Let x(t) be the true pilot’s voice and v(t) be the airplane noise. The signal captured by the main 

microphone y(t) is the mixture of the two:  
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)()()( twtxty  (27) 

Let us assume that the true interference dynamics is given by the following form (FIR): 

)()2()1()( 21 mtvbtvbtvbtw m   (28) 

and we estimate the interference dynamics as: 

 ˆ)()(ˆ)2(ˆ)1(ˆ)ˆ;(ˆ
21  tmtvbtvbtvbtw T

m (29) 

Based on the estimated interference model, we cancel the noise by subtraction: 

)ˆ:(ˆ)()ˆ:(  twtytz  (30) 

Problem: Tune the FIR parameters ̂  so that the recovered signal )ˆ:( tz  is as close to the original

true signal x(t) as possible. Assume that the true signal x(t) is uncorrelated with the noise v(t).  

[ ( ) ( )] 0, ,E x t v t t    (31) 

Solution: Consider the expectation of the squared output )ˆ:( tz , i.e. the average power of signal

)ˆ:( tz , 

]}ˆ)()([{}]ˆ)()(){([2)]([

]}ˆ)()()([{])ˆ:([

22

22









ttwEttwtxEtxE

ttwtxEtzE

TT

T

(32) 

Our objective is to find the parameter vector ̂  that minimizes the mean squared error 

]}ˆ)()([{ 2  ttwE T
. Examining the second term: 

0]ˆ)()([

0)]()([)]2()([)]1()([)]()([ 21





 ttxE

mtvbtxEtvbtxEtvbtxEtwtxE

T

m
(33) 

These follow from the assumption (31).Therefore, minimizing the average power of )ˆ:( tz with

respect to parameter vector ̂  is equivalent to minimizing ]}ˆ)()([{ 2  ttwE T
,

]):([minarg]})()([{minargˆ 22 


tzEttwE T  (34) 

since ])([ 2txE  is not a function of the parameter vector and is not relevant to minimization of the 

squared error. 

We can use the Recursive Least Squares algorithm with forgetting factor  ( 10  ): 

)
)()(

)()(
(

1

)}1(ˆ)()({
)()(

)(
)1(ˆ)(ˆ

1

11
1

1

1

tPt

PttP
PP

ttty
tPt

tP
tt

t

T

t

T

t
tt

T

t

T

t





























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Challenge  Consider a live concert recording, as shown below. In addition to the main microphone 

for recording the performer’s sound, another microphone is used for monitoring the audience noise. 
The difference from the above pilot microphone problem is that it is difficult to measure the 

audience noise separately. To some extent the second microphone does include the performer’s 

sound. Therefore, the adaptive noise cancellation described above may not fully function. How can 
we alleviate the problem?  

 

Figure 3-6 Live concert recording with double microphones 

 
Figure 3-7 Block diagram of adaptive noise cancellation 
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