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2.160 IDENTIFICATION, ESTIMATION, AND LEARNING 

LECTURE NOTES NO. 14 

15. Time-Series Data Compression 

15.1 FIR Model 

 

 

 

 

 
 

Consider a FIR Model with colored noise v(t) 

 (1) 

Suppose that we want to identify the parameters involved in ( ) ( )G q B q only,
 

  
 

 

1 2

( ) ( 1) ( 2) ( )

T

m

T

b b b

t u t u t u t m







   
      (2)   

Consider the least square estimate for a given set of data  
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Let 0 be the vector of true parameter values. The parameter estimation error is given 

by 
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Cons   

The number of parameters, , m

bm n   , may be too large to estimate. This may 

occur if 

 The impulse response has a slow decaying mode, or 

 The sampling rate is high. 

The persistently exciting condition rank full rank  can hardly be satisfied. 

 Check the eigenvalues of T (or the singular values of ) 

m  21  

It is likely mnn     0121 .
 

Often m becomes more than 50 and it is difficult to obtain such an input series having 

50 non-zero singular values. 

 

 Time series data compression is an effective method for coping with this 

difficulty. Before formulating the above least square estimate problem, data are 

processed so that the information contained in the series of regressor may be 

represented in compact, low-dimensional form. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Filter Design     Lk(q) 

. 

. 

. . 

. 
. 

. 

 

 

 

 

 

R
m
       R

n
   n<m 

Coordinate Transformation (Data Compression) 

L1(q) 

L2(q) 

Ln(q) 

 

 

y(t) u(t) 



Department of Mechanical Engineering, MIT  H. Harry Asada 

 

 3 

15.2  Continuous-Time Laguerre Series Expansion 

Let us begin with continuous-time Laguerre expansion. 

 

[Theorem 15.1] If a transfer function G(s) is  

 Strictly proper  0)(lim 
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sG
s

  0)( G          (5) 

 Analytic in 0)Re( s   No pole on RHP 
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where 0a . 

 

Proof: 

 Consider the transformation given by  
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This called “bilinear transformation”. 
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Therefore, there exists a Laurent expansion for )(zG : 
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The Laplace transform of the Laguerre functions 
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The Main Point 

The above Laguerre series expansion can be used for data compression if the 

parameter a , called a Laguerre pole, is chosen such that slow poles, i.e. dominant 

poles, of the original system are close to the Laguerre pole. Let pi be a slow real pole 

of the original transfer function G(s). If the Laguerre pole a is chosen such that 

ipa  , then a truncated Laguerre expansion: 
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converges to the original G(s) quickly for the following reason. 

 

- Recall - 

For a continuous-time system, a pole close to the imaginary axis is slow to converge, 

while a pole far from the imaginary axis converges quickly. Likewise, in discrete time, 

a pole close to the origin of a z-plane quickly converges, while the ones near the unit 

circle are slow. 

 

 

 

 

 

 

 

Choose a  such that ap 1 , where 1p  is a slow, stable pole. Using the bilinear 

transform, this slow pole in the s-plane can be transferred to a fast pole in the z-plane, 

as shown below. Representing in the z-plane, the transfer function can be truncated; 

just a few terms can approximate the impulse response since it converges quickly. 
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the dominant pole so that most of the slow poles may be approximated by the 

Laguerre pole. 

 

With the bilinear transform, these slow poles are transferred to the ones near the 

origin of the z-plane. They are fast, hence the transfer function can be approximated 

to a low order model. The following example demonstrates these unique features of 

the Laguerre Series Expansion. 

 

Example 2 

 Consider the continuous-time, Laguerre series expansion of the following two 

transfer functions: 
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a). The Laguerre series expansion is associated with the transformation of variables 

given by (7). Change the variable of the above transfer function )(1 sG  from s to z, and 

obtain the new transfer function )(1 zG . Find the poles of )(1 zG , when the parameter a 

is 1; 1a . 
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Replacing s by this in )(1 sG  yields: 
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b). Setting the parameter a to 1a , obtain the coefficients of the Laguerre series 

expansion of )(1 sG : 
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Is the coefficient series  kg  a finite series or an infinite series? What if the parameter 

a is not 1: 1a ? Explain why. 
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Substituting a = 1 into the above transfer function 
1( )G z  in part a) yields: 

1 2 1 2

1

1 1 1 1
( ) (1 )

4 4 2 4
G z z z z         

This shows that the Laguerre series expansion converges in the second term. Therefore, 

it must be expressed as: 

   
2

2121

2121

)1(

22

1

1

1

2

1

2

)1(

1
)(



















s

ggsgg

s

s

s
g

s
g

s
sG

 

Multiplying 
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c). Change the variable of )(2 sG  from s to z in the same way as part a), and obtain the 
new transfer function )(2 zG . Find all the poles of the new transfer function )(2 zG . 
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d). Set 5.1a , and plot the poles of )(2 zG  on a complex plane. Next, set 5a , and 
plot the poles once again. Which parameter value gives faster convergence in the 
Laguerre series expansion, 5.1a  or 5a ? Explain mathematically why it 
converges more quickly than the other. 
 
Solution 

5.1a ,  
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The unit circle in the z - plane corresponds to the imaginary axis in the s - plane. If poles 

exist near the unit circle in the z - domain, convergence is slow. On the other hand, if 

poles are close to the origin in the z - domain, convergence is fast. Namely, the impulse 

response doesn’t need many terms. An extreme case is that all the poles are at the origin 

of the z - domain. As shown in Part b), only two terms are needed when both poles are at 

the origin. 

5a
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When 5.1a , both poles are within a radius of 
5

1
 from the origin in the complex 

plane, while those poles for are outside of this radius. Therefore, the impulse 

response of )(2 zG with 5.1a converges more quickly than )(2 zG of a = 5. 

 
 

  

5a
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15.3 Discrete-Time Laguerre Series Expansion 

[Theorem 15.2] 

Assume that a Z-transform G(z) is  

 Strictly proper    0)( G           

 Analytic in 1z   RHP 

 Continuous in 1z  
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The relationship between z-plane and w-plane is more complex, but we can show the 
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where nkqLk ,,1),(   is a series of filters. Once the original input data are filtered 

with nkqLk ,,1),(  ,  

  nktuqLx kk ,,1),()(           (20) 

The output )(ty  is represented as a moving average of the transformed input kx , 

that is, a FIR model. 
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Furthermore, )(txk  can be computed recursively. 
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Recursive Filters 

 

 


