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2.160 IDENTIFICATION, ESTIMATION, AND LEARNING 

Part 2 Kalman and Bayes Filters

LECTURE NOTES NO. 5 

This chapter and the following few chapters will discuss Kalman Filter and its advanced 

algorithms and theory. The basic formula of Kalman Filter is analogous to Recursive Least 

Squares; both are types of the Prediction-Error Method where estimates are corrected 

recursively based on prediction error. While RLS is a deterministic estimation algorithm 

where statistical properties of variables are neither quantified nor used, Kalman Filter 

exploits statistical properties in an optimal manner. Furthermore, Kalman Filter incorporates 

a plant dynamic model in its prediction mechanism and thereby allows us to estimate the state 

of the plant as a state observer. Finally, Kalman Filter is flexible and expandable in many 

ways. Unlike the Wiener Filter, an alternative optimal filter applicable to linear systems 

alone, Kalman Filter, even in its original form, is applicable to linear time-varying systems. 

Its state-space representation is flexible and powerful enough to extend the algorithm to 

nonlinear systems and non-Gaussian processes. Its multivariate output formulation is 

effective to integrate multiple sensor modalities, having diverse sampling rates, noise 

properties, and physical measures. Its uncertainty quantification formula is effective for 

evaluating and predicting expected “usefulness” of each sensor modality and thereby allows 

us to optimize a sensing strategy, which has led to the development of Adaptive Sampling 

techniques and Simultaneous Localization and Mapping (SLAM). All together Kalman Filter 

and its advanced algorithms have been making significant contributions to today’s control 

and navigation technologies. We will begin with the basic discrete Kalman Filter and the 

Kalman-Bucy Filter, followed by two major extensions. One is to nonlinear systems, and the 

other is to non-Gaussian processes. 

5. Discrete Kalman Filter

5.1 State Estimation Using Observers 

In discrete-time form a linear time-varying, deterministic, dynamical system is 

represented by 

ttttt uBxAx 1 (1) 

where 
1nx

t Rx  is a n-dimensional state vector, 
1rx

k Ru  is an input vector, and tt BA , are 

matrices with proper dimensions. Outputs of the system are functions of the state vector and 

are represented with a  -dimensional vector
1x

t Ry  :

ttt xHy  (2) 

where 
xn

t RH  is an observation matrix. 

Given those parameter matrices ),,( ttt HBA and initial conditions of the state variables,

one can simulate the system for predicting states and outputs in response to a time sequence 

of inputs. See Figure 4-1 below. This simulator may not work well when the model 
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parameters are not exactly known; actual outputs observed in the real system will differ from 

the predicted values. 

A dynamic state observer is a real-time simulator with a feedback mechanism for 

recursively correcting its estimated state based on the actual outputs measured from the real 

physical system. See Figure 5-2 below. Note that, unlike a standard feedback control system, 

the discrepancy between the predicted outputs tŷ and the actual outputs yt from the real 

system are fed back to the model rather than the real physical system. Using a feedback gain 

matrix 
nx

t RL  , the state observer is given by 

ttt

tttttttt

xHy

yyLuBxAx

ˆˆ

)ˆ(ˆˆ
1




(3) 

To differentiate the estimated state from the actual state of the physical system, the estimated 

state residing in the real-time simulator is denoted tx̂ . With this feedback the state of the 

simulator will follow the actual state of the real system, and thereby estimate the state 

accurately. If the system is observable, convergence of the estimated state to the actual state 

can be guaranteed with a proper feedback gain. In other words, a stable observer can forget its 

initial conditions; regardless of an initial estimated state 0x̂ , the observer can produce the 

correct state as it converges. This is Luenberger’s State Observer for deterministic systems. 

A special case of the above state observer is estimation of constant parameters ̂ . See 

equation (17) in Chapter 2. Replacing the state transition matrix At by the nxn identity matrix 

and setting inputs to zero leads to a recursive parameter estimation formula in (2-17): 

 )(ˆ)()1(ˆ)(ˆ tytytt t  (2-17) 

The difference from the previous parameter estimation problem is that in state estimation the 

state makes “state transition” as designated by the state transition matrix At and the input 

matrix Bt driven by an input time sequence. Both recursive parameter estimation and state 

estimation, however, are analogous; both based on the Prediction-Error-Correction formula. 

xt xt+1 

+

+ 

ut

Bt 

At 

unit 

time 

delay

Figure 5-1 Dynamic simulator of deterministic system 
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Luenberger’s state observer is strictly for deterministic systems. In actual systems, sensor 

signals are to some extent corrupted with noise, and the state transition of the actual process is 

to some extent disturbed by noise. If stochastic properties of these noise sources are available, 

state estimation may be performed more effectively than simply using sensor signals as 

noise-free signals and estimating the sate based on noise-free state transition model. Rudolph 

Kalman investigated this problem and developed the celebrated Kalman Filter. Surprisingly 

enough, Kalman did it 10 years before Luenberger published his state observer paper.  

To formulate this stochastic state estimation problem we need to use properties of 

multivariable random processes, which will be summarized in the following section.  

5.2 Incorporating Multivariate Random Processes into State Equations 

We extend the state equation given by (1) in the previous section to the one as a 

multivariable random process. Namely, the state 
1nx

t Rx  is driven not only by the input 
1rx

t Ru  but also by noise, which is a random process. Let
1nx

t Rw  be a multivariable

random process, called “Process Noise”, driving the state through another matrix 
nxn

t RG  . 

The state equation is then given by 

ttttttt wGuBxAx 1 (4) 

See Figure 5-3. Since the process noise is a random process, the state tx driven by tw is a 

random process. The second term on the right hand side, ttuB , is a deterministic term. In the 

following stochastic state estimation, this deterministic part of inputs is not important, since 

its influence upon the state tx  is completely predictable and hence it can be eliminated 

without loss of generality. Therefore we often use the following state equation:

ttttt wGxAx 1 (5) 

Model

+

+ 

ut
Bt 

At

unit 

time 

delay

Ht 

yt 
    Real Physical System 

Gain Lt 

Figure 5-2 Luenberger’s state observer for 

deterministic linear system 

_ 

+

+ 
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The outputs of the system are noisy, as long as they are measured with physical sensors. 

Let 
1x

t Rv  be another multivariable random process, called “Measurement Noise”. We 

treat the observed output as the superimposition of measurement noise 
tv and the term 

completely determined by the state variable tx . 

tttt vxHy  (6) 

See Figure 4-3. Since measurement noise tv is a multivariable random process, the outputs 

measured with sensor, too, are a multivariable random process. 

The stochastic properties of the process noise and measurement noise described above 

are now characterized as multivariable random processes.  It is a common practice that the 

mean of noise is set to zero since, if the means are non-zero, the origins of the state variables 

and the outputs can be shifted so that the mean of the noise is zero. 

[ ] 0, [ ] 0t tE v E w  (7) 

From equation (3-25), the covariance of measurement noise 
1x

t Rv  is given by 

xT

stV RvvEstC  ][),( (8) 

If the noise signals at any two time slices are uncorrelated, 

stvvEstC
T

stV  ,0][),( (9) 

the noise is called “White”. (We will discuss why this is called white later in the power 

spectrum chapter.) Note that, if t = s, the above covariance is that of the first order density. 

][)(
T

ttV vvEtC  (10) 

The diagonal elements of this matrix are variances of the individual output signals. Multiple 
sensor signals may be correlated. For example, a 2D vision system produces x and y 
coordinate signals, which may be correlated. Then, it is likely that the off-diagonal 

elements of the covariance matrix Cv are non-zero. 

xt xt+1 

+

+ 

ut
Bt 

At 

unit 

time 

delay 

Figure 5-3  State space representation of linear time varying system with 

process noise and measurement noise 
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The process noise can be characterized in the same way. The covariance matrix is then 

given by: 

nxnT

stW RwwEstC  ][),( (11) 

Furthermore, the correlation between the process noise and the measurement noise may exist, 

if both are generated in part by the same disturbance source. This can be represented with the 

covariance matrix given by: 

nxT

stWV RvwEstC  ][),( (12) 

Usually the covariance between the process and measurement noises is zero. 

5.3  Framework of the Discrete-Time Kalman Filter 

Consider a dynamical system given by equations (13) and (14), 

ttttt wGxAx 1 (13) 

tttt vxHy  (14) 

where 
1nx

t Rx  , 
1x

t Ry  , 
1nx

t Rw  , 
1x

t Rv  , ,, nn

tt RGA  and 
xn

t RH  . 

Assume that the process noise tw and the measurement noise tv have zero mean values,

E[wt]=0, (15) 

E[vt]=0. (16) 

and that they have the following covariance matrices: 

Figure 5-4 Noise characteristics 
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








stR

st
vvEstC

t

T

stV

0
][),( (17) 










stQ

st
wwEstC

t

T

stW

0
][),( (18) 

stvwEstC
T

stWV  ,0][),( (19) 

where matrix Rt is of x , and is positive definite, and matrix
nxn

t RQ  is positive 

semi-definite.  

Optimal State Estimation Problem  

Obtain an optimal estimate of state vector xt based on measurements yi, i = 1,2,…t, that 

minimizes the mean squared error:  

    tt

T

ttt xxxxEJ  ˆˆ (20) 

subject to the state equation (13) and the output equation (14) with white, uncorrelated 

process and measurement noises of zero mean and the covariant matrices given by equations 

(15) - (19). (Necessary initial conditions are assumed.)

Rudolf E. Kalman solved this problem around 1960
1
. 

Kalman Filter: two major points of his seminal work in 1960. 

I) If we assume that the optimal filter is linear, then the Kalman filter is the state

estimator having the smallest unconditioned error covariance among all linear

filters.

II) If we assume that the noise is Gaussian, then the Kalman filter is the optimal

minimum variance estimator among all linear and non-linear filters.

5.4 The Discrete Kalman Filter as a Linear Optimal Filter 

The Discrete Kalman Filter provides a recursive solution to the minimum mean-square 

error estimation problem described previously. Figure 5-5 depicts the outline of the discrete 

1 It has been debatable to determine who invented so called Kalman Filter. A radar theoretician, Peter 

Swerling, developed a similar algorithm at Rand Corporation. His seminal paper in 1958 anticipated 

Kalman Filter. 
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Kalman filter. 

This algorithm consists of three major components: 

Expected state transition  

From (8), we know how the previous estimate 1
ˆ
tx will make a transition 

1111   ttttt wGxAx ; Let’s write this as 
1

ˆ
tt

x

Transition from estimated state at time t-1, 1
ˆ
tx

][ˆ

]ˆ[ˆ

1111

11111









tttt

tttttt

wEGxA

wGxAEx
  (21) 

This estimate
1

ˆ
tt

x , termed a priori state estimate, provides the expected state based on 1
ˆ
tx . 

This is called “a priori”, since it is an estimate before assimilating a new output ty .   

Predicted output 

Form (9) and (10) 

1
ˆˆ




tttt xHy   Note E[vt]=0 (22) 

Correction of the state estimate 

Assimilating a new measurement yt, we can update the state estimate in proportion to 

the output prediction error. 

All observations 

up to t-1 

timeyt yt-1 yt-2 y1 

State Estimate 

Expected state transition based on 

the model

a priori estimate 

Predicted output 

Prediction 

error 

Correction to 

state estimate 

a posteriori estimate 

Figure 5-5 Outline of the Kalman filter algorithm 
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)ˆ(ˆˆ
11 


tttttttt xHyKxx   (23) 

Equation (23) provides a structure of linear filter in recursive form. 
ln

t RK  is a gain 

matrix to be optimized so that the mean squared error (expected value of error) of state 

estimation may be minimized. 

A more general form of linear filter is 

tttttt yKxKx 211
ˆˆ 


(24) 

Both (23) and this form provide the same result. 

5.5 The Kalman Gain 

Consider the error of a posteriori estimate tx̂

ttttt

tttttttttt

ttttttttttt

vKHKI

xxHvxHKx

xxHyKxxxe











)(

)ˆ(ˆ

)ˆ(ˆˆ

11

11

(25) 

where t is a priori estimation error, i.e. before assimilating the new measurement yt. 

tttt xx 
1

ˆ (26) 

For the following calculation, let us omit the subscript t for brevity, 

   

KvKvKHKvKvKHKHKH

vKHKvKHKee

TTTTTTTTTT

tttttt

T

ttttttt

T

t









222
    (27) 

Let us differentiate the scalar function t

T

t ee with respect to matrix K by using the following 

matrix differentiation rules. 

i)     T

ji

ij

T

nn

n baba
K

f

dK

df
bKa

b

b

KK

KK

aaaf 
































































1

1

111

21

(28) 

….. Rule 1 
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ii)
   nTT RKRcRbbKKcg ,,, 11
 

1 1 1 1 1

n
T T

ik k ij j q pj j pk k q

i j k j kpq

dg
K c K b c K b K c b Kbc Kcb

dK K     

    
       

    
     

  (29) 

              …...Rule 2 

         

Using these rules, 

 



][22][2

1][2

2]2[

TTTTTTTTTTT

TT

TTTTT

T

TT

t

T

t

HvKvvHKvvKHHKHHKH

ruleKHKv
dK

d

ruleKvKvKHKv

b

HKK

c

H
dK

d
ee

dK

d











 

 

(30) 

The necessary condition for the mean squared error of state estimate with respect to the gain 

matrix K is: 

   0
dK

Jd t               (31) 

Taking expectation of t

T

t ee , differentiating it w.r.t. K and setting it to zero yield: 

  0 TTTTTTTTT HvKvvHKvvKHHKHE     (32) 

KH can be factored out, 

0][][][][][][  TTTTTTTTT HEvEvvKEHvKEvKHEHKHE    (33) 

Examine the term  using (26) and (21), 

   

For the second term 

         Uncorrelated with vt 

                   Uncorrelated with vt 

-  

Now note that the state tx  has been driven by the process noise ,, 21  tt ww , which are 

uncorrelated with the measurement noise tv . Therefore, the second term vanishes: 

0][ T

tt vxE .  

][ TvE 

][]ˆ[

])ˆ[(][

1

1

T

tt

T

ttt

T

tttt

T

tt

vxEvxE

vxxEvE










11   ttt wxAx

22   tt wxA

0][][][ 11  

T

tt

T

tt

T

tt vwEvxAEvxE
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For the first term  

 

                           Uncorrelated with vt 

                                     Uncorrelated with vt 

In the above expression the state estimate 1
ˆ
tx is dependent upon the previous process noise 

,, 32  tt ww as well as on the previous measurement noise ,, 21  tt vv , both of which are 

uncorrelated with the current measurement noise tv . Therefore, the first term, too, vanishes. 

 

Therefore 

            (34) 

   

Similarly, 

  0][][  TT vEvE              (35) 

 

Let us define the error covariance of a priori state estimation  

 

  ])ˆ)(ˆ[(][
111

T

tttttt

T

tttt
xxxxEEP 


          (36) 

 

Substituting (35) and (36) into (33), we can conclude that the optimal gain must satisfy 

 

0
11




T

ttttt

T

ttttt HPRKHPHK         (37) 

 

1

11
][ 


 t

T

tttt

T

tttt RHPHHPK         (38) 

 

This is called the Kalman Gain. 

 

5.6 Updating the Error Covariance 

 The above Kalman gain contains the a priori error covariance
1tt

P . This can be updated 

recursively based on the state transition model. 

Define the a posteriori state estimation error covariance 

 

   ][])ˆ)(ˆ[( T

tt

T

ttttt eeExxxxEP           (39) 

 

111
ˆˆ


 tttt
xAx

)ˆ(ˆˆ
2111211  

ttttttt xHyKxx

11   tt vxH

22   tt wxA

0]ˆ[
1




T

ttt
vxE

0][ 
T

ttvE 
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This covariance Pt can be computed in the same way as in the previous section. From (25), 

 

TTTT

tt

TTTTTTTT

T

t

KvvKEKHIEKHI

KKvvEKHIKvEKvKHIEKHIKHIE

KvKHIKvKHIEP

][)]([)(

][])([])[(])()[(

])))(()[((













 T

t

T

ttt KKRKHIPKHIP 


)()(
1

         (40) 

 

Substituting the Kalman gain (38) into (40) yields 

1
)(




ttttt PHKIP         (41) 

 

Exercise.  Derive (41) 

 

Furthermore, based on Pt we can compute
tt

P
1

by using the state transition equation (8). 

Consider 

tttt

tttttt

tttt

wGeA

wGxAxA

xx





 

)(ˆ

ˆ
111

       (42) 

 

From (36) 

T

t

T

ttt

T

t

T

ttt

T

t

T

ttt

T

t

T

ttt

T

tttttttt

T

tttt

GwwEGGweEAAewEGAeeEA

wGeAwGeAE

EP

][][][][

]))([(

][ 111





 


  (43) 

 

Evaluating ][][ T

tt

T

tt weEandewE  

]ˆ[][][)(]ˆ[

][]ˆ[])([]ˆ[

][])}ˆ(ˆ[{])ˆ[(][

1|11

1|11

1|

T

ttttt

T

ttt

T

tttt

T

ttt

T

tt

T

ttttt

T

ttttt

T

ttt

T

tt

T

tttttt

T

ttt

T

tt

wxEHKwvEKwxEIHKwxEA

wxEwxHKEwvxHKEwxAE

wxEwyyKxEwxxEweE













 (44) 

 

The first term: 1
ˆ
tx  does not depend on tw , hence vanishes. For the second term, using (8), 

we can write 0])[(][ 1111  

T

ttttt

T

tt wwGxAEwxE  since 0][ 1 

T

tt wwE . The third 

term vanishes since the process noise and measurement noise are not correlated. The last term, 

too, vanishes, since 1|
ˆ

ttx does not include tw . Therefore, 0][][  T

tt

T

tt ewEweE . 

T

ttt

T

ttttt
GQGAPAP 

1
        (45) 
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5.7 The Recursive Calculation Procedure for the Discrete Kalman Filter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-6 Flow chart of computation of Discrete Kalman Filter 

5.8 Anatomy of the Discrete Kalman Filter 

To better understand the Discrete Kalman Filter, let us consider the following questions: 

Question 1: The measurement noise covariance tR represents the reliability of sensors. How is 

this property of sensors used in the Kalman gain for correcting (updating) the state estimate?  

 

Question 2: How is the state estimate error covariance tP used for updating the state estimate? 

 

Question 3: How do the gain tK  and error co-variances tP  and | 1t tP   evolve with time? 

How are they affected by tR and tQ ? 
 

The Discrete Kalman Filter 

Measurement: 

   tttt vxHy                  (9) 

Initial State 

Estimate  

Initial Error Covariance  

Compute Kalman Gain 

 

Update error covariance 

 

 

 

Update State Estimate with 

new measurement 

 

 

Measurement yt 

State Estimate  

 

On-Line or Off-Line 

This does not depend on measurements 

y1,y2,…yt,… 

Real-Time 

On-Line  
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Minimizing the mean squared error 

 

      ]ˆˆ[ tt

T

ttt xxxxEJ           (20) 

Uncorrelated measurement noise 

     0tvE ,   









stR

st
vvE

t

T

st

0
 

Optimal Estimate 

 

       tttttt yyKxx ˆˆˆ
1


       

 

 

 

 

        1

11




 t

T

tttt

T

tttt RHPHHPK       (38) 

 

Error Covariance update (a priori to a posteriori): 

    
1


ttttt PHKIP              (41) 

   T

ttttt xxxxEP 


ˆˆ    : a posteriori state estimation error covariance 

   T

tttttttt xxxxEP  



 1|1|1|
ˆˆ    : a priori state estimation error covariance 

Post multiplying t

T

tttt RHPH 1  to (38), 

  T

tttt

T

ttttt HPRHPHK
11 

  

 

 

 

 

 

 

 

 

    
T

tttt HPRK             (46) 

The measurement noise covariance tR is assumed to be non-singular, 

1 t

T

ttt RHPK            (47) 

Noise Covariance 

Estimation output error 

The Kalman Gain 

1
ˆ

ttt xH  

T

ttttt

T

tt

T

ttt
HPRKHPHP

11 
  

ttttttt PPPHK 
 11  

(23) 

From (41) 
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Therefore 

tt

T

ttttt yRHPxx  



1

1
ˆˆ         (48) 

Q1. Without loss of generality, we can write  























2

2

2

2

1

0

0

l

tR








    

























tl

t

t

y

y

y


1

 

since if not diagonal we can change the coordinates. 
























2

2

11

1
ˆˆ

ltl

t

T

ttttt

y

y

HPxx





     (49) 

Depending on the measurement noise variance, 
2

i , the error correction term is attenuated; 
2

itiy  .  If the i-th sensor noise is large, i.e. large 
2

i , the error correction based on that 

sensor is reduced.  

A more general case is depicted in Figure 5-8. 

 

 

 

 

 

 

Figure 5-8 Sensor noise covariance 

Q2. By definition 

[ ]T

t t tP E e e ; ttt xxe  ˆ  

tP  is the error covariance of a posteriori state estimation. tP  is interpreted as a metric 

indicating the level of “expected confidence” in state estimation at the t-th stage of correction. 

 

 

Figure 5-7 Sensor noise variances 

l-dim 

measurement  

space 

 

:  good sensor  dependable 

 

 

 

 

     

  uncertain measurement 

  (bad sensor)  Less correction 
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Figure 5-9 Estimation error covariance tP  

The Kalman filter makes a clever trade-off between the intensity of sensor noise and the 

confidence level of the state estimation that has been made up to the present time;

T

t t tP E e e    . 

 

Q3: How does the state estimation error covariance change over time? This is a complex 

problem, and we will discuss dynamic properties and convergence conditions more 

thoroughly later in the following chapter. In this section we consider only a simple scalar case 

given by 

 1t t tx x w   ,  
0,

,
t s

t s
E w w

Q t s

 
 

 
 

 t t ty x v  ,    
0,

,
t s

t s
E v v

R t s

 
 

 
 

where 1

tx  , and all the variables are scalar: 
1

| 1, , ,t t tR Q P P   .  

If we assume convergence of the error co-variances and the Kalman gain, lim t
t

P P


 , 

| 1lim t t
t

c P 


 , and lim t
t

K K


 , then we can write  

c
K

c R
 


, (1 )P K c   , and c P Q          (51) 

from (38), (41), and (45). Eliminating K and P from the above equations yields 

 2 0c Qc QR                 (52) 

 Associated with matrix , which is 

positive-definite, we can consider an 

ellipsoid with eigenvalues ,

 

 

 (50) 

where  

     

Small variance  In average state estimation is quite certain in this direction   

  No need to make a large change 

 

 

Large variance in this 

direction  estimation is 

not sure in this direction 

 

More corrected 

based on new data 

n-dim 

state  

space 

 

 is large     less confident 
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which can be solved for c: 

2

2 2

Q Q
c QR

 
   

 
     

2

2 2

Q Q
P QR

 
    

 
            (53) 

From this result, we can gain some insights how the process noise and the measurement noise 

affect the error co-variances and the Kalman gain.  

 In case the process noise variance is very small: 1Q , i.e. a very predictable process, 

the a priori state estimation error covariance and the Kalman gain converge to zero,

| 1lim 0t t
t

c P 


  , 0K   along with the a posteriori error covariance, 0P  . 

 In case the sensor noise variance is very small: 1R , i.e. very accurate sensors, the a 

priori state estimation error covariance converges to the process noise variance: 

| 1lim t t
t

c P Q


  , and the Kalman gain converges to 1K   with approximately zero 

a posteriori error covariance 0P  . 

5.9  Implementation Issues 

 

 Kalman filters have been applied to diverse applications since early 60’s. Various 

implementation techniques have also been developed. This section briefly describes a few 

implementation issues. There are three known failure scenarios in which Kalman filters do not 

work well: 

 

a) Unobservable or nearly unobservable processes 

b) Numerical instability 

c) Blind spot 

 

a) Poor observability 

This issue can be checked with the well-known observability condition. A more practical 

and informative method is to examine the error covariance matrix Pt. If the process is poorly 

observable, the variance associated with some unobservable state variables tends to blow up. 

 

If the process is poorly observable, one should change the sensors, or a new sensor must be 

added. 

 

b) Numerical instability 

 

Asymmetric covariance: By definition, covariance matrices are symmetry, but numerically 

they may become asymmetric, leading to divergence in recursive computation. Such an 

asymmetric covariance often comes from the computation of:  

  
1

)(



ttttt PHKIP             (41) 

where 
 n

t RK and 
n

t RH  
are not square matrices. Some round off errors yield an 
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asymmetric posteriori covariance tP , although the a priori covariance 1| ttP  is symmetry. To 

resolve this problem, it is efficient to use Joseph’s form (40): 

  T

t

T

ttt KKRKHIPKHIP 


)()(
1

        (54) 

which is equivalent to (41), as discussed previously. Note that both terms on the right hand 

side are symmetric matrices. 

 

U-D Factorization: Since the covariance matrix is a real, symmetric, positive-definite matrix, 

it can be decomposed to the following U-D Factorization form: 

 

  













































100

**10

**1

,

0

0

00

2

1















U

d

d

d

D

UDUP

n

T

      (55) 

where matrix D is a diagonal matrix while matrix U is an upper triangular matrix. This 

particular form assures the positive definiteness of the covariance matrix, and implicitly 

preserves the symmetry of P. Furthermore, if the covariance update formula of Kalman filter 

is converted to the one in the diagonalized space using the upper triangular matrix U, the 

dynamic range of computation reduces to 50 % of the original formulation. See more details 

in Section 9.5 in Brown and Hwang’s textbook. 

 

c) Blind spot 

 

Consider another failure scenario. When covariance matrices of both process noise and 

measurement noise are deemed to be very small, the state estimation error-covariance reduces 

quickly. This is clear
2
 from the covariance propagation and update formulae for discrete 

Kalman filter:  

T

ttt

T

ttttt
GQGAPAP 

1
, and 

1
)(




ttttt PHKIP .  

This implies that the Kalman gain diminishes quickly. Once the Kalman gain diminishes, the 

subsequent observations are ignored. In other words, the Kalman filter is decoupled from the 

sensors and the real process. This blind spot problem is often triggered by numerical round off 

error in computing covariance matrices as well. 

                                                        
2
 This is even clearer in the continuous Kalman Filter to be discussed in the following section. In 

lieu of the recursive covariance propagation and update formulae, we have the following Riccati 

differential equation (62): 

 
TTT GQGHPRPHPFFPP  1  
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Figure 5-10 Transition of error covariance 
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