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2.160 IDENTIFICATION, ESTIMATION, AND LEARNING 

LECTURE NOTES NO. 9  

9. Particle Filters 

9.1 Non-Parametric Representation of a Probability Distribution 

There are two types of representation 

of probability distribution: Parametric and 

Non-parametric. The former examples 

include Gaussian, Poisson, binomial, 

Laplace, and chi-squared distributions, each 

of which is represented with particular 

parameters. A Gaussian distribution, for 

example, is completely characterized with 

two parameters: mean and covariance. The 

latter, non-parametric representation can 

represent an arbitrary distribution. A 

histogram, for example, represents an 

arbitrary distribution by a collection of 

adjacent rectangles, each indicating the 

frequency of occurrence within the interval, 

called a bin. It approximates the original 

(continuous) distribution, as shown in Figure 

9-1. 

 “Particles” are another non-

parametric representation of probability 

distribution. Simply, particles are a collection 

of samples, as shown in Figure 9-1. Suppose 

that we want to approximate a distribution 

given by pdf ( )f x . Particles are generated 

by drawing M samples from ( )f x : 

 

 (1) (2) ( ), , , MX x x x   (1) 

 

Note that ( )ix may be populated densely 

where ( )f x is large, reflecting the 

probability density of ( )f x . 

 

 Now how can we draw samples with 

a specific pdf? Consider the algorithm 

depicted in Figure 9-2.  

a) Construct the cumulative 

distribution function (cdf)  of pdf: 

 

Figure 9-1 Non-parametric representations of a 
probability distribution: Histogram (top) and Particles 

(bottom) 

Figure 9-2 Generation of particles from a uniform 
distribution 
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 ( ) ( )
x

F x f d 


           (2) 

 

b) Draw M samples from a uniform distribution between 0 and 1; ( )0 1iy  . This can be 

easily done in MATLAB. 

 

c) Convert ( )iy to ( )ix by solving: 

 ( ) ( )( )i ix F y .         (3) 

 

Note that cdf ( )F x is a monotonically non-decreasing function between 0 and 1. Therefore, (3) 

has a unique solution where ( ) 0f x  . 

 

9.2 Implementation of Bayesian Filter Using Particles 

 

The Recursive Bayesian Filter we have discussed in the previous chapter can be 

implemented by using “Particles”. The Bayesian Filter algorithm consists of two steps of 

computation: 

 

Given initial conditions: 0 0( )g x : Initial belief of state, i.e. probability density of 0x , 

Step 1 (Propagation: the Chapman – Kolmogorov equation) Compute: 

 

| 1 1 1 1 1 1( ) ( | , ) ( )t t t t t t t t tg x p x x u g x dx


     


       (4) 

 

Step 2 (Update: Bayes’ Rule) Assimilate new data ty  and compute: 

 

 | 1( ) ( | ) ( )t t t t t t tg x p y x g x          (5) 

 

Set 1t t  and repeat the process. 

 

The feature of Bayesian Filtering is that it is applicable to nonlinear dynamical systems with 

non-Gaussian process and measurement noise. 

 

Stochastic discrete-time, nonlinear dynamical system: 

 

 
 1 1 1,t t t tx x u w   f

         (6) 

 

where 1tw  is uncorrelated process noise with pdf 1( )W tf w  , and an observation equation 

 

 t t ty x v h
          (7) 

 

where vt is uncorrelated measurement noise with pdf ( )V tf v . Using these pdfs we can write 
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1 1 1 1( | , ) ( ( , ))t t t W t t tp x x u f x x u     f        (8) 

and 

 ( | ) ( ( ))t t V t tp y x f y x h         (9) 

 

in (4) and (5). 

 

In applying Particles to the above Bayesian 

Filtering, let us first represent the posteriori belief 

1 1( )t tg x 
by a set of M particles: 

 

 (1) (2) ( )

1 1 1 1, , , M

t t t tX x x x      (10) 

 

drawn from 
1 1( )t tg x 

. The number of samples is 

typically: M = 1,000. 

 

 Instead of computing (4) directly, we 

stochastically propagate each sample in 
1tX 
based on (6) to generate a set of particles 

approximating the a priori belief | 1( )t t tg x . See Figure 9-4. 

 

 
Figure 9-4  Propagation of particles through the nonlinear stochastic dynamic eq. 
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Figure 9-3  A set of particles approximating 1 1( )t tg x   
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For i = 1 to M, draw ( )

| 1

i

t tx 
 from 

1 1( ( , ))W t t tf x x u  f . This includes a shift in x due to the 

deterministic part of the state transition 
1 1( , )t tx u f with input 

1tu 
and the random part due to the 

process noise. Collecting the propagated particles we can form : 

 

  (1) (2) ( )

| 1 | 1 | 1 | 1, , , M

t t t t t t t tX x x x            (11) 

which approximates the a priori belief | 1 | 1( )t t t tg x  . 

 

The second step of Bayesian Filter computation is belief update. The key technique for this 

implementation is “Importance Sampling”. 

 

Importance Sampling 

 

 Consider two pdfs ( )f x and ( )g x , 

where  

 

 ( ) 0 . . ( ) 0.g x x X s t f x       (12) 

 

See Figure 9-5 (a). Suppose that sampling 

from ( )f x is difficult to perform, while it is 

easy from ( )g x . The following algorithm 

allows us to sample from ( )f x by sampling 

from ( )g x with a proper weight. The 

cumulative distribution function of ( )f x can 

be written as 

  

 
( )

( ) ( ) ( )
( )

x x f
F x f d g d

g


   

 
     

     (13) 

We define: 

  

 
( )

( )
( )

f x
W x

g x
    (14) 

 

called importance weight or importance factor. This suggest that, although we cannot sample 

particles directly from ( )f x , we can obtain the cdf ( )F x from  

 

 ( ) ( ) ( )
x

F x W g d  


          (15) 

 

Let (1) ( )Mx x be sample particles drawn from ( )g x , and ( , )I x be a membership function given 

by 

 

x

pdf

( )g x( )f x

x

pdf

( )g x

( )f x

( )
( )

( )

( )
( )

( )

i
i

i

f x
W x

g x


( ) 0 ( ) 0g x f x  

(a)

(b)

Figure 9-5 Importance sampling 
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1;

( , )
0;

x
I x

x







 


.         (16) 

 

Then the integral (15) can be written as 

 

 
( )

( )

( )
1

1 ( )
( ) ( , )

( )

iM
i

i
i

f x
F x I x x

M g x

          (17) 

 

As shown in Figure 9-5 (b), the locations of the particles are approximating ( )g x , but with the 

importance weights they represent the distribution of ( )f x . 

 

This importance sampling technique can be applied to the second step of Bayesian Filter 

computation. Comparing (5),(9) and (15) or (17), we can relate ( ), ( ),  and ( )g x f x W x to 

 

 

| 1 | 1

( ) ( )

| 1

( ) ( )

( ) ( )

( ) ( ( ))

t t t t t

t t

i i

V t t t

g x g x X

f x g x

W x W f y x

 







  h

       (17) 

 

Therefore, the cumulative distribution function of ( ) ( )t tf x g x can be computed as 

 

 ( ) ( )

| 1 | 1 | 1

1

1
( ) ( ) ( ) ( ( )) ( , )

Mx
i i

t t t t V t t t t t t

i

G x W g d f y x I x x
M

    




   h    (18) 

  

After constructing the cdf ( )t tG x , draw M samples from ( )t tG x and place them in 

 

  (1) (2) ( ), , , M

t t t tX x x x         (19) 

 

 

This algorithm is called “Particle Filter”. 

 

9.3 Re-sampling 

 

 There are many variations to the above Particle Filter. One well known technique is “Re-

sampling”, which is an alternative to the second step of the above algorithm. 

 

 Sample an integer m (1 m M   ) with a probability proportional to importance factor 
( )mW , and include the corresponding particle ( )

| 1

m

t tx   into tX . Repeat this process M times to form: 

 

 (1) ( ){ , , }M

t t tX x x  .        (20) 
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Each of these particles is taken from   (1) ( )

| 1 | 1 | 1{ , , }M

t t t t t tX x x   . Particle ( )

| 1

i

t tx 
 having a high 

importance factor  ( )iW is likely to be taken repeatedly, while the ones with lower importance 

factors may be eliminated in 
tX . 

 

 The sampling of integer m with ( )mW can be implemented by computing the cumulative 

of ( )mW : 

 

 ( ) ( )

1 1

1
,

m M
m i i

i i

W W W
W  

           (21) 

 

As particles are re-sampled, the posteriori particles look, for example, 

 

 (1) (2) (3) (3) (3) (4) (4) (5) (7) (7) (9)

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1{ , , , , , , , , , , , }t t t t t t t t t t t t t t t t t t t t t t tX x x x x x x x x x x x             

 

Note that (3)

| 1t tx   was sampled three times, since the corresponding importance factor was large. 

Thus, the probability of ˆ
tx  conditioned by observation ty  and input tu  is reflected in the 

posterior belief. 


