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2.160 IDENTIFICATION, ESTIMATION, AND LEARNING 

LECTURE NOTES NO. 13 

14 Asymptotic Distribution of Parameter Estimates 

14.1 Overview 

Now that the identification problem of parametric models has been formulated based 

on the Prediction-Error Method (PEM), this chapter will analyze basic properties of the 

parameter estimation for a few simple model structures. Among others fundamental 

questions about the PEM parameter estimation include whether the estimation process 

converges; if converges, how quickly it converges; how accurately it can be estimated; 

what will be the expected variance; and how many data must be taken to guarantee 

certain accuracy. See the figure below. Asymptotic Variance Analysis gives you a 

guideline for addressing these issues. 

 
 

The main points to be obtained in this chapter 

 

The variance analysis of this chapter will reveal 

a) The estimate converges to * at a rate proportional to 
N

1
 

b) Distribution converges to a Gaussian distribution: N(0, Q). 

c) Confidence Interval and Confidence Level 

d) Cov N̂  depends on a signal-to-noise ratio. 

 

Identified model parameter N̂  with cov N̂  :     a “quality tag” confidence interval 

Iteration/Data Number 

 

 

Distribution of  

The variance is 

large for small N. 

The variance is 

small for large N. 

How quickly 

does the variance 

reduce? 
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14.2 Central Limit Theorems. 

The mathematical tool needed for asymptotic variance analysis is “Central Limit” 

theorems. The following is a quick review of the theory.  

Consider two independent random variable, X and Y, with PDF, )(xfX
and )(yfY

.  

Define another random variable Z as the sum of X and Y: 

YXZ   
Let us obtain the PDF of Z. 
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Further, consider VYXW  , )(vfV  has the same rectangular PDF as X and Y. 
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1/2 

 

 

)(xfX  and )(yfY  have the same 

uniform distribution. Combining the 

two distributions, we can obtain the 

distribution of Z. 

2 -2 

1/2 

 

)(wfW  

w  
3 1 -3                        -1       0 

1 -1 

1/2 

 

The resultant PDF is getting close to a Gaussian distribution. 
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In general, the PDF of a random variable 


N

i

iX
1

 approaches a Gaussian distribution, 

regardless of the PDF of each iX , as N gets larger. More rigorously, the following central 

limit theorem has been proven. 

 

A Central Limit Theorem of Independent Random Variables 

 

Let , 1, 2,tX t   be  d-dimensional random variables with 

Mean   )( tXEm         

Co-variance    
T

X t tC E X m X m   
 

   for all t    (1) 

 

Consider the sum of mX t   given by 

       (2) 

 

Then, as N tends to infinity, the distribution of YN converges to the Gaussian distribution 

given by PDF: 

 

1
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where  

 
1

1
lim

N

t
N

t

y X m
N



  . 

 

14.3 Distribution of Estimate ˆ
N  

Applying the Central Limit Theorem, we can obtain the distribution of estimate N̂ as N 

tends to infinity. 

Let be an estimate based on the prediction error method (PEM); 

       (4) 

 

  , where ˆ( , ) ( ) ( | )t y t y t     (5) 

 

For simplicity, we first assume that the predictor  is given by a linear regression: 
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and the parameter vector of the true system, , is involved in the model set, MD0 . 

 

The actual data is generated by  

 

0 0( ) ( )Ty t e t            (7) 

where  
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Since minimizes ),( N

N ZV   
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Using the Mean Value Theorem, NV ' can be expressed as 

 

 (9) 

 

where N  is a parameter vector somewhere between  and ˆ
N . 

 

Assuming that N

N

NN V
d

d
ZV '),(''


   is non-singular and using (8) for (9), 
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To obtain the distribution of 0
ˆ  N , let us first examine ),(' 0

N

N ZV   as N tends to 

infinity. 

 

,         (11) 

 

Using (6) and recalling ˆ( , ) ( ) ( | )t y t y t     
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Therefore, (11) reduces to 
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)()(
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N

ZV
N

t

N

N 


         (13) 

 

Let us treat tXtet )()( 0  as a random variable. Its mean is zero, since 

 

      0)()()()( 00  teEtEtetEm       (14) 

 

The covariance is 
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Note that X1, X2, …, XN are independent, since e0(t) is independent. 
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and apply the Central Limit Theorem. The distribution of YN , i.e. ),(' 0

N

N ZVN  , 

converges to a Gaussian distribution as N tends to infinity. 
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Therefore, under the ergodicity assumption, 
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From (10), (17) and (19), the distribution of )ˆ( 0 NN converges to the Gaussian 

distribution given by 

 

0
ˆ( ) ~ (0, )NN Q as N          (20) 

where 
1

0

1

0

1 )(   RRRRQ           

 

Note that, as coordinate transformation y=Ax is performed, the covariant matrix C 

associated with a multivariate Gaussian distribution is transformed to ACA
T
. This is used 

in (21). 

 

 
 

Remark 1 

Eq.(20) manifests that the standard deviation of 0
ˆ  N  decreases at the rate of 

N

1
for 

large N. See the figure above. Note that Q
N

N

1ˆcov  . 

 

Confidence Interval and Confidence Level 

 The above asymptotic variance analysis provides a useful guideline for selecting 

the number of data points: Confidence Interval and Confidence Level. 

For simplicity, let us consider a scalar case, d = 1. The covariance is simply given 

by 2 . The figure below shows the standard normal distribution where the horizontal axis 

  

Large N 

Small N 
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is normalized by the standard deviation  . The probability that the true value 
0 is 

involved in the interval [ , ]    is expressed as 

 

 0 0
ˆ ˆPr Pr 1N N

N

N


      



   
         

  
   (21) 

 

1-  is called Confidence Level and  

0
ˆ ˆ
N N

N N

 
         

 

is called Confidence Interval. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Remark 2 

The above result is for a very restrictive case. A similar result can be obtained for 

general cases with mild assumptions. 

 The true system (7) does not have to be assumed. Instead, )(minarg*  V  

must be involved in DM.  

 The linear regression (6) can be extended to a general predictor where the model 

parameter   is determined based on the prediction error method (4), (5). 

 

The extended result of estimate distribution is summarized in the following theorem, i.e. 

Ljung’s Textbook Theorem 9-1. 

 

 

Theorem: Asymptotic Variance   Consider the estimate N̂ determined by (4) and (5). 

Assume that the model structure is linear and uniformly stable and that the data set 
Z

satisfies the quasi stationary and ergodicity requirements. Assume also that N̂ converges 

with probability 1 to a unique parameter vector *  involved in DM: 

 

0
ˆ( ) /NN     

(0,1)  

    
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 NaspwDMN 1..ˆ *     (22) 

 

and that 

0)('' * NV  ;  positive definite      (23) 

 

and that 
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where tm  is the ensemble mean given by 
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Then, the distribution of )ˆ( 0 NN converges to the Gaussian distribution given by 

 

),0(~)ˆ( 0  PNN N          (26) 

 

where P is given by 

    1*1* )('')(''
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  NN VQVP       (27) 
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The proof is quite complicated, since the random variable *),()(ˆ





tty
d

d








 is not 

independent. Therefore, the standard central limit theorem is not applicable. 

 

Appendix 9A, at p.309 of Ljung’s textbook, shows the outline of proof.  Since the model 

structure is assumed to be stable uniformly in  , Xt and Xs are independent as t and s are 

distal.  Because of this property, the sum,  



N

t

tt mX
N 1

1
, converges to the Gaussian 

distribution. 

 

14.4 Expression for the Asymptotic Variance. 

 As stated formally in Theorem 5, the distribution of  *ˆ  NN  converges to a 

Gaussian distribution for the broad class of system identification problems.  This implies 

that the covariance of N̂  asymptotically converges to: 
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 P
N

Cov N

1
~ˆ         (29) 

 

This is called the asymptotic covariance matrix. 

 

The asymptotic variance depends not only on 

 

(a) the member of samples/data set size: N, but also on 

 

(b) the parameter sensitivity of the predictor: 
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(c) Noise variance 0 . 

 

Let us compute the covariance once again for the general case.  From (5) and (30), 
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Unlike the linear regression, the sensitivity    ,t is a function of  , 
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When the true system is contained in the model structure, MD0 , and that is unique, 
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from (28), (31), and (33) 
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Also from (32) 
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Since )(0 te and y
d

d
ˆ

2

2


are independent, the second term varnishes.  Substituting (34) and 

(35) into (29), 
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The asymptotic variance is therefore a) inversely proportional to the number of samples, 

b) proportional to the noise variance, and c) inversely related to the parameter sensitivity. 

The more a parameter affects the prediction, the smaller the variance becomes. 

 

Since 0  is not known, the asymptotic variance cannot be determined.  In practice, 

however, an empirical estimate, like the following formula, works well for large N. 
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If one computes NP


during experiments, sufficient data samples needed for assuring the 

model accuracy may be obtained. 
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