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2.160 IDENTIFICATION, ESTIMATION, AND LEARNING 

LECTURE NOTES NO. 16 
  

17. Neural Networks 

17.1 Physiological Background 

Neuro-physiology 

 A Human brain has approximately 14 billion neurons, 50 different kinds of 

neurons. … uniform 

 Massively-parallel, distributed processing 

            Very different from a computer (a Turing machine) 

 
 

McCulloch and Pitts, Neuron Model 1943 

Donald Hebb, Hebbian Rule, 1949 

…Synapse reinforcement learning  

Rosenblatt,  1959 

…The perceptron convergence theorem 
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Consider a single neuron model with a logistic output function ( )g z , as shown below. 

The synaptic weight iw is changed based on a gradient descent method, so that squared 

error between the predicted output ŷ and its true value y may be reduced. 
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(3)  2 'i iw g e x      

 

Note that the above learning rule with the correct output y presented (called Supervised 

Learning) changes the weight in proportion to the product of input ix and error e.                                  

Replacing e by ŷ  yields the Hebbian Rule, which is an Unsupervised Learning rule. 

Compare the following two: 

               iw    (Input ix ).(Error)                              iw    (Input ix ).(output ŷ ) 

                Supervised Learning   Unsupervised Learning 
 

17.2 The Widrow-Hoff Learning Algorithm and Stochastic Approximation 

Consider a linear output function for )(ˆ zgy  : 
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 Suppose that N sample data   1, ,... 1,...j j j

ny x x j N  are used for training the weights  

nww ,...,1  , so that the following mean squared error may be minimized:  
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Applying the gradient descent method yields 
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This method requires to store the gradient    
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ˆ for all the sample data

1j N before making one correction to the weight. It is a type of batch processing. 

 

An alternative method is to execute updating the weight iw  every time the training data 

is presented. 

 

(8)   ][][ kxkkw ii      for the k-th presentation 

(9) where ][][][)( kxkwkyk ll  

 

 

 

 

 

 

More specifically, the learning procedure is stated as: 

Present all the N training data in any sequence, execute (8) and (9) above for each 

presentation, and repeat the entire N presentations, called an “epoch”, many times. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Correct output for the 

training data presented 

at the k -th time 

Predicted output based on the 

weights  kwi for the training data 

presented at the k -th time 

   epoch 1    epoch 2    epoch 3    epoch 4    epoch p 

N presentations 
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This learning procedure is called the Widrow-Hoff algorithm, for which convergence 

conditions have been obtained. 

 

Convergence Problem:  As the entire sequence of N presentations is repeated infinite 

times, do the weights nww ,...,1  converge to the optimal ones: )...(minarg 1 nN
w

wwJ ? 

The following is a brief summary of convergence analysis based on Stochastic 

Approximation. 

 

If a constant learning rate 0 is used, this does not converge, unless 0min NJ  

If the learning rate is varied as a function of presentation number k, convergence can be 

guaranteed. See the above figure for [ ] (constant) /k k  . 

 

It is known (Robbins and Monroe, 1951) that, if the variable learning rate  k  satisfies: 

 

 1).     0lim 
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k
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(10) 2).  

 

 

3). 

 

  

 

 

then the estimated weights 1[ ],..., [ ]nw k w k  converge to their optimal values 10 0,..., nw w  

with probability 1.  
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This is a special case of the Method of Stochastic Approximation, where each training 

data x appears at probability ( )p x . (In the Widrow-Hoff, it is a uniform distribution.) 

 

The stochastic approximation minimizes the following expected loss function with 

respect to weight nww ,...,1 : 

(12)   dxxpwyxLwLE )(),()(   
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The learning rule is basically the same as (8) and (9). 
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This condition prevents all the 

weights from converging so fast 

that error will remain forever 

uncorrected. 

This condition ensures that random 

fluctuations are eventually 

suppressed 
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Convergence is guaranteed for learning rate  k  that satisfies conditions (10).  This 

Stochastic Approximation method in general needs more presentations of data, i.e. the 

convergence process is slower than the batch processing.  But the computation is very 

simple, requiring no large memory space. 

 

17.3 Multi-Layer Perceptrons 

The Exclusive OR Problem 

 

Input Output 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

X1 X2 y 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(15) 32211 wxwxwz     

Set z=0, then 1 1 2 2 30 w x w x w    represents a straight line in the 1 2x x  plane. 
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Consider a nonlinear function in lieu of (15) 

  

Can a single neural unit (perceptron) 

with weights ,,, 321 www  produce the 

XOR truth table? 

 No, it cannot 

Class 0 and class 1 cannot be 

separated by a straight line. … 

Not linearly separable. 

 
 

 

 

Class 0 

Class 1 
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(17) 
3

1
2),( 212121  xxxxxxfz  

 

 

 

 

 

 

 

 

 

Next, replace 
1x 2x by a new variable 3x  

(18)  
3

1
2 321  xxxz  

 

This is apparently a linear function: Linearly Separable. 

 

 

 

Hidden Units 

 Augment the original input patterns 

 Decode the input and generate an internal representation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Extending this argument, we arrive at a multi-layer network having multiple hidden 

layers between input and output layers. 

 

 

Multi-Layer Perception 
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Hidden Unit 

Not directly visible from output 
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17.4 The Error Back Propagation Algorithm 
 

The Multi-Layer Perception is a universal approximation function that can approximate 

an arbitrary (measurable) function to any accuracy. 

 

Forward computation 
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m
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m = 0, 1, 2, …  

   

Starting from m = 0, all the units can be computed recursively towards the output layer: m 

= M. 

 

Note:  Multi-Layer Perceptrons with nonlinear activation functions, g(z), are nonlinear in 

parameters w. 

 A single-layer neural net is essentially linear in w, although g(z) is nonlinear. 

 If two consecutive layers have linear activation functions, they can be combined 

and replaced by a single layer network. 

 

Layer 0 

Layer 1 

Layer 2 

Layer m 

Layer M 

Hidden Layers 

Input 

Layer 

Output 

Layer 
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To be able to deal with nonlinear problems, such as the XOR problem, we now focus on 

a multi-layer perceptron with nonlinear activation functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

)(m

jiw weight of the connection from unit i to unit j in layer m 

)(m

jy output from unit j in layer m 

)(m

ix input to a unit in layer m from unit i 

 

 

How do we train the multi-layer perceptron, given training data presented sequentially? 

 

The theory of stochastic approximation is not applicable, since the parameters are not 

linearly involved in the predictor. However, the Gradient Descent Method (The Widrow-

Hoff algorithm) can be extended to multi-layer perceptrons. 

 

The algorithm  is called the Error Backpropagation Algorithm. 

 

 

Example 

 

 Consider a three-layer perceptron in order to derive a basic formula of error 

backpropagation. 
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Gradient Descent 
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Likewise, 
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: There are two routes between 5z and 21w . 



Department of Mechanical Engineering, MIT  H. Harry Asada 

 

 10 

   

2121

5 3 52 4 2

5 3 2 21 4 2 21

2
5 53 3 3 32 5 54 4 4 42

21

3 32 4 42 2 2 1

( ' ( ) ' ( ) )

( ) ' ( )

ww grad E

z x zx x xE

z x x w x x w

y
w g z w w g z w

w

w w g z x





  

  

   

     
   

       


 



 

  (24) 

 

The above computation can be streamlined by computing j , starting from the final layer 

back to the first layer. 

 

Error )ˆ( yy  is propagated backward…   

That’s why it is called the Error Backpropagation Algorithm. 

 

In general, 

 

For the final layer, m = M, 
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For hidden layers, 11  Mm  
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Forward Input Propagation    

 

Move from m = 1 to M 
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Error Back propagation 

 

Move backward from m = M  to 1 
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The Error Backpropagation Algorithm 
 [Wobas 1974, 1994] [Rumelhart, Hinton, & Williams,1986] 
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17.5 Stabilizing Techniques 

1).  Properties of the sigmoid function 

Layer 0 
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Layer m Layer m+1 Layer M 

Unit  Unit  Unit  

    

 

 
  

Unit  Unit  Unit  

 

 

 

Unit  

 

 
 

 

 

 

 

Move m = M back to 1 
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      Nonlinear, differentiable 
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2) Smoothing by adding a momentum term 

 Ravine: a typical failure scenario of convergence 
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0.5 1 0 

1/4 

For  z . 

g  varies 10  g . 

Max 4/1g   

at 0z   5.0g  
The incremental weight 

change is proportional to 

the derivative of )(zg . 

In these ranges 

weight changes are small. 

0g or 1g  





i

ijij xwz

z .1

 

The largest weight change occurs in this 

range. 

5.0g , 0z  

The unit has committed to neither 0 nor 1. 

The error backpropagation algorithm 

forces the unit to react significantly to that 

input.  
Once the unit (j) has committed to take 

an output value of either “0” or “1”, the 

weight jiw  will no longer change very 

much for new inputs. 

These properties contribute to stabilizing 

the learning process 
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3) How to get rid of local minima 

- Increase the number of hidden units 

- Randomize the initial weights and repeat learning,  

then take the best one. 

 

 

Steep 

ravine 

Gently sloping floor 

contours of iso-error 

curves 

Zig-zag 

divergence 

slow convergence 

 

proportionality 

 constant 
Previous weight change 

This second term, called a momentum, 

filters out high frequency oscillations. 


