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2.160 IDENTIFICATION, ESTIMATION, AND LEARNING 

LECTURE NOTES NO. 5 

6. Continuous Kalman Filter (The Kalman-Bucy Filter) 

6.1 Converting the Discrete-Time Filter to a Continuous-Time Filter 

Consider a linear, continuous-time dynamical system given by 

( ) ( ) ( ) ( )x t F t x G t w t             (49) 

( ) ( )y H t x v t              (50) 

where F(t) and H(t) are, respectively, state transition and observation matrices, which are 

in general time-varying, and w(t) and v(t) are process and observation noise. As before, 

without loss of generality the input has been set to zero: ( ) 0u t  .  

The figure below compares the continuous-time dynamical system to the 

discrete-time system given by eqs. (5-4) and (5-5) in the previous section. Note that the 

process noise ( )w t  leads to an integrator in the continuous time system, whereas the 

process noise tw  in the discrete time system is not integrated in the forward path of the 

block diagram. Therefore, the time integral of the continuous time process noise is 

analogous to the discrete-time process noise. 

( )
t

t
t t

w w d 


                (51) 

where t  is the sampling interval of the discrete time system. The covariance of the 

process noise can be computed using this formula. 
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where ( ')    is Dirac’s delta function, which is zero unless '  . We assume that the 

process noise is uncorrelated in the continuous time system, too. Therefore, the process 

noise covariance Qt is related to that of the continuous time as ( )tQ Q t t  .  

 The noise vt in the discrete-time system, on the other hand, can be interpreted as a 

time average of the noise v(t) in the continuous system. 
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              (53) 

The measurement covariance is therefore given by 
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(54) 

Again the measurement noise is assumed to be uncorrelated, and the process noise and 

measurement noise, too, are uncorrelated to each other; ( ) ( ) ( ) ( )TE w t w s Q t t s     , 

( ) ( ) ( ) ( )TE v t v s R t t s     , and ( ) ( ) 0TE v t w s    , for all t and s. 

Figure 6-1  Comparison between continuous time and discrete time dynamical system 

with process and measurement noise. 
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From (45) 

 

    (57) 

 

Note that 1
1 ( )t t
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
is used in the above expression. 

Ignoring higher-order small quantities;   02 tO  (58) 

(59) 

(60) 

(61) 

(62) 

This is called the Matrix Riccati Equation. 

Similarly, we can reduce the discrete time form of state estimation correction to the one 

of continuous time. Combining (23) and (21) and replacing variables yield 

 xHyKxFx ˆˆˆ  (63)  

where the Kalman gain is given by 
1 RPHK T (64) 

This estimator given by (62), (63), and (64) is called the Kalman-Bucy Filter (1961). 

The physical interpretation of the Matrix Riccati Equation 

(62) 
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6.2 The Algebraic Riccati Equation 

Assume that the Riccati differential equation has an asymptotically stable solution for

)(tP : 




 PtP
t

)(lim
                         (65) 

Then the time derivative vanishes 

0
)(

lim 
 dt

tdP

t                          (66) 

Substituting this into the Riccati equation yields 

TTT GQGHPRHPFPFP  





10       (67) 

This is called the Algebraic Riccati Equation.  This is a nonlinear matrix equation, and 

need a numerical solver to obtain a solution for P . 

Consider a scalar case; 11

RP , 11,,,, RGRQHF . The Algebraic Riccati Equation 

can be solved analytically 

02 22
2

  QGFPP
R

H
         (68) 
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There are two solutions; one positive and the other negative. 

Taking the positive solution 


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            (70) 

Note that, regardless of the sign of F  ( 0F means a stable process dynamics), the 

above limit P is positive. 

 

Remarks 

1) As the sensor variance R increases, P  increases 

2) As the process noise variance Q increases, P increases 
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3) When the process noise variance Q is zero, and the process is stable, 0F ,
P

becomes zero. 

6.3 Convergence Analysis 

6.3.1 Transient Response of the Covariance Matrix 

The Discrete Kalman Filter is hinged on the covariance matrix update law: 

 
1


ttttt PHKIP           (41) 

T

ttt

T

ttttt
GQGAPAP 

1          (45) 

 

 

Figure 6-2  Time evolution of estimation error covariance 

 

Continuous Kalman Filter: 

The covariance matrix is given by the Riccati Differential equation: 

TTT GQGtHPRHtPFtPtFPtP
dt

d
  )()()()()( 1      (62) 

where F is a state transition matrix: 

)()()()()( twtGtxtFtx
dt

d
                         (49) 

Let us examine the properties of the Riccati differential equation in order to gain insights 

as to whether the covariance of Kalman filter converges or not. 

 

P 

time 

Does this converge? And 

where ? 
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6.3.2 Matrix Fraction Decomposition 

The Riccati Differential Equation (62) can be solved by using a technique, called the 

Matrix Fraction Decomposition 

Consider a square matrix L(t) decomposed into two square matrices A(t) and B(t), 

1( ) ( ) ( )L t A t B t                                (71) 

where B is non-singular and both A and B are differentiable with respect to time t. The 

above expression is called a fraction decomposition of Matrix L . 

Differentiating ItBtB 1)()(  (identify matrix) with respect to time t, 

011   BBBB 
                             

Therefore 

111 )()(   BtB
dt

d
BtB

dt

d

                  (72) 

Now let us represent the covariance matrix )(tP by 

)()()( 1 tBtAtP                              (73) 

and applying eq.(72) 

111

11)(









BBABBA

BABA
dt

tdP





                           (74) 

From the Riccati equation (62) 

TTT GQGHABRHABFABFAB
dt

tdP
  11111)(

             (75) 

Equating the right hand sides of (74) and (75), and post-multiplying B yield 

   BFHARHABBGQGFABABA TTT   111 
             (76) 

Therefore, if we find A and B that satisfy: 
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BGQGFAA T               

BFHARHB TT  1                              (77) 

then )()()( 1 tBtAtP  satisfies the Riccati differential equation.  Note that (77) is linear 

differential equations with respect to matrices A and B . This can be rearranged as  

 

 

 

                                                                 (78) 

 

As for the initial conditions, we can set  

0)0( PA   and IB )0( .           (79) 

6.3.3 Convergence Properties of a Scalar, Time-Invariant Case 

Consider a scalar case : )()( tatA  , and )()( tbtB   

and assume that the process and measurement equations are time-invariant 

 

 

 

 

Eq.(78) reduces to  
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This can be solved with initial condition of  0)0( Pa   and 1)0( b . 

 Scalar 

1

( ) ( )( ) ( ) ( ) ( )
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A Hamiltonian Matrix, M 
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The eigenvalues of the Hamiltonian Matrix are  

     222

2,1 HG
R

Q
F         (81) 

The solution of (80) is given by 

0( )
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t
a t P

e
b t

   
   

   

M   (82) 

Using the eigen vectors 1v , 2v  associated with eigenvalues 
1 , 

2 , respectively, the 

Hamiltonian matrix can be diagonalized as  
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Using this in the above solution yields 
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where QGq 2 . Therefore, the covariance is given by        
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The steady-state solution is given by 
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This agrees with the previous result, eq.(70). 

Figure 6-3 Solutions of the scalar, time-invariant Riccati equation (from Grewal and 

Andrews, “Kalman Filtering: Theory and Practice”, Wiley 2001,  Section 4.8,) 

The figure above shows the solutions for parameter values of F=0, H=R=Q=1. Note that 

the denominator of (85) may become zero at time: 

0
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This implies that the solution becomes discontinuous, going from   to   when passing the zero 

point. This undesirable discontinuity does not happen if 

2
2 2

0 2

R H
P F F G Q P

H R


 
   

 
 

, the 

negative solution of the Algebraic Riccati Equation, as illustrated in the figure. 

An important property of the Riccati Differential Equation (RDE): 

If the system is observable, i.e. (F, H), Observable Pair, then the RDE has a 

positive-definite, symmetric solution for an arbitrary positive-definite initial value of 

matrix Po>0;  

0( ) 0 . . , such that ( ) 0 . ., ( ) ( ) , 0,T n nP t for P p d P t p d P t P t R t        (87)




