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2.160 IDENTIFICATION, ESTIMATION, AND LEARNING 

LECTURE NOTES NO. 2 

PART 1: Regression 

2. PARAMETER ESTIMATION FOR DETERMINISTIC SYSTEMS

This chapter’s materials are based on Goodwin and Sin’s textbook, “Adaptive Filtering, Prediction, and 

Control”,  Chapter 3. 

2.1 LEAST SQUARES ESTIMATION

Consider a deterministic system with a linear input-output model, as shown below. 

Parameters to estimate: 
mT
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The problem is to find parameters 
T

mbb ][ 1   from an observation dataset: 
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[Remark] Although this input-output model looks linear and algebraic, we can represent a dynamical 

system, linear or nonlinear, in this form.   

a linear dynamical system, e.g.  )()2()1()( 21 mtubtubtubty m 

mT Rmtututut  )](,),2(),1([)(

or 

a nonlinear dynamic system, e.g. )1()2()1()( 21  tutubtubty

y 

Linearly parameterized model 

Input-output model 

Deterministic 

System 

w/parameter θ

(1)
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Ttututut )]1()2(),1([)(     

Note that the parameters, b1, b2,….. are linearly involved in the input-output equation. As long as the 

parameters to estimate are linearly involved in the input-output equation, we can apply the following 

estimation theory. The vector ( )t  is referred to as a regressor. 

Using an estimated parameter vector ̂ , we can write a predictor that predicts the output from inputs:              

    ˆ)()(ˆ Ttty                        (2) 

We evaluate the predictor’s performance by the mean squared error given by 
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Problem: Find the parameter vector ̂ that minimizes the squared error: 

)(minargˆ 
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Differentiating )(NV and setting it to zero, 
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Note that the above expression is the differentiation of a scalar function NV  with a vector m  . 

Rearranging (5) yields   
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T  

Note that, since T   is a scalar, we can move it before or after a vector: ( ) ( )T T      .  

Concatenating the N regressor vectors, we can define an Nm matrix 

])()2()1([ N     (7) 

Nm   

If vectors (1), (2), , ( )N   span the whole m-dimensional vector space, mrank  ;  full rank. 

Then matrix T m m  is invertible, since mrankrank T  . 

 

Under this condition, the optimal parameter vector is given by 

 

PB̂                              (8) 

= 
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where    1
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2.2 THE RECURSIVE LEAST-SQUARES ALGORITHM 
 

While the above algorithm is appropriate for off-line, batch processing where the whole data are 

available, we often need to estimate parameters in real-time where data are assimilated in sequence.  

A recursive algorithm for updating parameter estimation in each sampling period is a powerful tool for 

such real-time applications. 

 

PB̂  : Batch Processing 

 

 

On-Line Estimation 

Based on the latest data {y(t), )(t }  

We update the estimate̂  

 

Recursive Formula 

 Simple enough to complete 

within a given sampling period 

 No need to store the whole 

observed data 

tt BPt )(̂  

 

Recall PB̂ , where 
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A recursive computation algorithm can be obtained in the following three steps: 
 
Step 1  Splitting Bt and Pt 

From (10) 

Actual 

System 

Model

 

y(t) u(t) 
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From (9) 
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Step 2  Apply the Matrix Inversion Lemma (An Intuitive Method) 

 
Premultiplying Pt and postmultiplying Pt-1 to (12) yield 

11

1

11

1
)()( 






 t

T

ttttttt PttPPPPPPP   

11 )()(   t

T

ttt PttPPP       (13) 

 

Postmultiplying )(t  
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Dividing both sides by 
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Postmultiplying 1)( t
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Note that no matrix inversion is needed for updating Pt! 
This is a special case of the Matrix Inversion Lemma. 

    1111111 
 DACBDABAABCDA    (15) 

 
Exercise 1     Prove (15) and use (15) to obtain (14) from (12) 
 
 

Step 3  Reducing tt BPt )(̂          (16)  

to the following recursive form: 

(13) 
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ˆ ˆ ˆ( ) ( 1) ( ) ( ) ( 1)
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                                     Replacing this by 
1 m

t R , we obtain (17) 

 

 
 

This Recursive Least Squares Algorithm was originally developed by  
Carl Friedrich Gauss (1777 – 1855) 

 

The Recursive Least Squares (RLS) Algorithm 
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with 

)0(̂ : arbitrary 

Po: positive definite matrix 

 

A type of gain for correcting the error 
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2.3 PHYSICAL MEANING OF MATRIX P 

The Recursive Least Squares (RLS) algorithm updates parameter vector )1(ˆ t  based on new 

data )(),( tytT  in such a way that the overall squared error may be minimal in each step. This is done 

by multiplying the prediction error )()1(ˆ)( tyttT   with the gain matrix which contains matrix Pt-1. 

To better understand the RLS algorithm, let us examine the physical meaning of matrix Pt-1.  

       Recall the definition of matrix P:
T

t

i

T

t iiP 




1

1 )()(   where  (1).. ( ) m tt R     . 

From (14) and (15) we can find that the parameter update gain 
tK  in (17) can be written as: 

   ( )t tK P t        (19) 

Therefore, the parameter update is scaled with the matrix P.  

 

Exercise 2  Prove (19). 

 

Note that matrix 
T as well as matrix P vary depending on how the set of regressor vectors )}({ i

span the m-dimensional space. See the left figure below. 

 

m –dim space 

 

 

m-dim space 

many –vector are in 

this direction 

 

Well traveled 

 

less traveled direction 

Geometric Interpretation of matrix P
-1

. 

 

New data: 
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Since 
mxmT R  is a symmetric matrix of real numbers, it has all real eigenvalues. The eigen 

vectors associated with the individual eigenvalues are also real. Therefore, the matrix 
T can be 

reduced to a diagonal matrix using a coordinate transformation, i.e. using the eigen vectors as the bases. 
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 
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 
 
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  (20) 

The direction of )(max

T  =  The direction of )(min P . 

If min ( ) 0T   , then 0)det( T
, and the ellipsoid collapses. This implies that there is no input 

data )(i  in the direction of min , i.e. the input data set does not contain any information in that 

direction. In consequence, the m-dimensional parameter vector   cannot be fully determined with this 

dataset. 

 

In the direction of max ( )T  , there are plenty of  input data: )(i . This direction has been well 

explored, well excited. Although new data are obtained, the correction to the parameter vector )1(ˆ t  

is small, if the new input data )(t  is in the same direction as that of max ( )T  , i.e. the direction of 

)(min P . See the second figure above. 

 

The above observations are summarized as follows: 

1) Matrix P determins the gain of the prediction error feedback 

)()1(ˆ)(ˆ tett t       (17) 

where tK  is the gain matrix proportional to tP  : 
 

1

1

( )
( )

1 ( ) ( )

t
t tT

t

P t
P t

t P t




 





  


     

(21) 

 

2) If a new-data point )(t  is aligned with the direction of  Tmax  or  min tP , 

 then ( )t tP t    is small. Therefore, the correction is small. 

 

3) Matrix Pt represents how much we know about the m-dimensional data space. The more we already 

know, the less the error correction gain Kt becomes. Correction  gets smaller and smaller as t 

tends infinity. 
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2.4 INITIAL CONDITIONS AND PROPERTIES OF RLS 
 

In general, computation of a recursive formula entails initial conditions. There are two initial conditions 

for RLS: )0(̂ and Po. There do not have to be close to their correct values, since they are recursively 

modified. But Po must be good enough to be able to use the RLS algorithm. As discussed below, we can 

set an arbitrary value for )0(̂ , but  
 

Po must be a positive definite matrix such as the identity matrix I. 
 

Given a positive definite Po and an arbitrary )0(̂ , the following theorem shows that the recursive 

algorithm is usable and computable. Furthermore, the following theorem explains how the recursive 

algorithm brings the parameter estimate ˆ( )t from a given initial value to the one that minimizes the 

squared error1. Depending on the given initial values of )0(̂ and Po the (best)estimation process 

thereafter will be different. The following theorem shows how the initial conditions influence the 
recursive estimation process. The point is that  

 We treat initial values of )0(̂ and Po as the best estimate derived from some preliminary data.  

As long as Po is positive definite, it is always possible to decompose it to 1

0 ( ) ( )TP    . Here 

( )  are fictitious regressor vectors, but they exist for an arbitrary positive definite Po. Assuming 

batch processing for this preliminary optimal estimate, we can write a given initial parameter 

vector as 
0 0

ˆ(0) P B  , where 
0 ( ) ( )B y  . We treat that  )0(̂ and Po were determined 

from the fictitious dataset  ( ), ( )y .  

 Then the resultant optimal estimate that RLS provides is the one that minimizes the following 
cost function. 

 
Theorem 
 The Recursive Least Squares (RLS) algorithm minimizes the following cost function: 

     )0()0(
2

1
)()(
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1
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
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 



t

i

TT

t PiiyJ     (22) 

where Po is an arbitrary positive definite matrix (m by m) and 
mR)0(̂ is arbitrary. 

 

Proof    Differentiating )(tJ  
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Collecting terms 

1 1
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1 1
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t t

T

i i

i i P y i i P     

 

 
   

 
   

 

                                                             

1 This does not mean the parameter estimate converges to the true parameter value. It depends on the 
“richness” of the regressor vectors. More complete convergence analysis will be addressed later in the 
system identification chapters. 
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Postmultiplying )(t to both sides of (14) 
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using (26) in (25) yields (18) 
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Q.E.D. 

Discussion on the Theorem of RLS 
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 (27) 

1) As t  gets larger, more data are obtained and term A gets overwhelmingly larger than term B.   As 
a result, the influence of initial conditions fades out. 

2) In an early stage, i.e. small time index t,  is pulled towards )0(


, particularly when the 

eigenvalues of matrix 
1

0

P are large. 

3) In contrast, if the eigenvalues of 
1

0

P  are small,   tends to change more quickly in response to 

the prediction error,  )()( tty T . 
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4) The inverse initial matrix 1

0P    represents the level of confidence for the initial parameter value

)0(


. 

 

Note: Strictly speaking, the P matrix used in the above argument is different from the original definition, 







t

i

T

t iiP
1

1
)()(  . It has been extended to  

 
1

1

1
)()(






 o

t

i

T

t PiiP        (28) 

 
Other important properties of RLS include: 

 Convergence of )(t . It can be shown that  

0)1(ˆ)(ˆlim 


tt
t

         (29) 

See Goodwin and Sin’s book, Ch.3, for proof. 
 

 The change to the P matrix: 1 tt PPP  is negative semi-definite, i.e. 

 

 
0

)()(1

)()(

1

11 







tPt

PttP
P

t

T

t

T

t




        (30) 

 

for an arbitrary 
mRt )( and positive definite Pt-1 . 

 
Exercise 3  Prove this property, (30). 

 

2.5 ESTIMATION OF TIME-VARYING PARAMETERS 
 

So far we have discussed the estimation of parameters that are assumed to be constant:    

constant. In many important applications, including indirect adaptive control, parameters tend to vary 

over time. Consider a smart traction control system for an automobile. It monitors the road conditions, 

e.g. roughness, wetness, rain, snow, or ice, and adapts the traction control parameters accordingly. 

Clearly these parameter values change over time.  
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In estimating such varying parameters, old data that were observed long time ago are useless. More 

recent past data are more important, which must be weighted heavily than those older data. 

 

 

 

 

 

 

 

 

 

 

Least Squares with Exponential Data Weighting 

 

Forgetting factor: α 

 

   10         (31) 

 

 

 

 

 

 

 

 

Weighted Squared Error 

)()( 2

1

ieJ
t

i

it

t 


         (32) 

)(minarg)(ˆ 


tJt 

       (33) 

 

Large α, for slowly 

changing processes 
Small α, for rapidly changing 

parameters/processes 
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)(ˆ t is given by the following recursive algorithm. 

 
 )1(ˆ)()(

)()(

)(
)1(ˆ)(ˆ

1

1 





 ttty
tPt

tP
tt T

t

T

t 



     (34) 

 















)()(

)()(1

1

11
1

tPt

PttP
PP

t

T

t

T

t
tt






                        (35) 

Exercise:  Obtain (34) and (35) from (32) and (33). 

 

A drawback of the forgetting factor approach 

When the system under consideration enters “steady state”, the matrix 11 )()(  t

T

t PttP   

tends to the null matrix. This implies 

 

   1

1
 tt PP


       (36) 

As α<1, 1/ α makes Pt larger than Pt-1. Therefore { Pt } begins to increase exponentially. 

 The “Blow-Up” problem 

 

Remedy: 
 

Covariance Re-setting Approach 

 The forgetting factor approach has the “Blow-Up” problem 

 In the ordinary RLS the P matrix gets small after some iteration (typically 10-20 iterations). Then 

the gain dramatically reduces, and 


is no longer updated. 

 

The Covariance Re-Setting method is to solve these shortcomings by occasionally re-setting the P 

matrix to: 

 kkIP
t

0        (37) 

This re-vitalizes the algorithm. 

 

 

2.6 ORTHOGONAL PROJECTION 
 

The RLS algorithm provides an iterative procedure to converge to its final parameter value. This  

may take more than m-steps,  dimension of   . The Orthogonal Projection algorithm provides the least 

squares solution exactly in m recursive steps 
 

Assume ])()2()1([ mm           (38) 
 

Spanning the whole m-dim space 

Set  P0 = I   (the m x m identity matrix) and ˆ(0)  arbitrary 

Compute 

 )1(ˆ)()(
)()(

)(
)1(ˆ)(ˆ

1

1 


 ttty
tPt

tP
tt T

t

T

t 



      (39) 
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where matrix Pt-1 is updated with the following recursive formula. 

Note that +1 involved in the denominator of RLS is eliminated. This causes a numerical 

problem when )()( 1 tPt t

T   is small, the gain is large.

This orthogonal projection algorithm is more efficient, but is very sensitive to noisy data. Ill-conditioned 

when 0)()( 1  tPt t

T  . RLS is more robust. 

2.7 MULTI-OUTPUT, WEIGHTED LEAST SQUARES ESTIMATION 

l-output
l

l

R

y

y

ty 
















 


1

)(

For each output  )()(ˆ tty
T

ii   

1

ˆ( ) ( )

T

T

T

y t t



 



 
 

   
 
 

1,m l mR R    (40) 

Error 

1

( ) ( ) ( )T

e

e t y t t

e



 
 

   
 
 

 (41) 

Consider that each squared error is weighted differently, or 

Weighted Multi-Output Squared Error: 





t

i

TTT
t

i

T

t iyWiyieWieJ
11

))(())(()()()( 


 (42) 

)(minarg)(ˆ 


tJt  ttt )(̂

1

1

( ) ( )
t

T m m

t

i

i W i R







 
     

 






t

i

T

t iyWi
1

)()(


(43) 

The recursive algorithm 

 )1(ˆ)()()()1(ˆ)(ˆ  tttyWttt T

t 


 (44) 

  1

1

1

1

11 )()()()( 







  t

T

t

T

ttt tttWt

y1(t) 

y2(t) 

yl(t) 

Pt = Pt−1 −
Pt−
ϕ
1
T
ϕ
(
(
t
t
)
)
P
ϕT (

ϕ
t)
(t
P
)
t−1

t−1




