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2.160 IDENTIFICATION, ESTIMATION, AND LEARNING 

LECTURE NOTES NO. 10 

PART 3: Linear System Identification 

10. Introduction to System Identification

10.1 Overview 

10.1.1Taxonomy   We now move on to the second part of the course, System 

Identification. You will learn various techniques and theories for identifying systems. 

Figure 10-1 shows the classification and taxonomy of system identification methods, 

including both linear and nonlinear systems. Linear system identification methods are 

classified into parametric and non-parametric methods. The latter includes the method for 

determining either time response or frequency response directly from experimental data 

(direct method) and the one to take correlation between input and output signals 

(correlation method), which is robust against noise. 

Figure 10-1 Taxonomy of system identification methods 

Parametric models include both state space and transfer function models. The 

subspace method is a systematic approach to identifying state equations of a dynamical 

system. Transfer functions can be identified based on prediction error ( ˆ( ) ( ) ( )e t y t y t  ) 

or on the likelihood of a candidate model (Information theoretic method).  

In general, nonlinear systems are represented by a collection of basis functions. 

Parameters associated with each basis function and the connectivity of the group of basis 

functions are identified to fit experiment data. Radial-basis functions and wavelets are 

well known as basis functions that can be tuned to local properties of a nonlinear system, 

while Volterra series expansion and artificial neural networks are tuned to the global 
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input-output relationship of a nonlinear system. Hammerstein model and Wiener model 

represent a nonlinear system by a combination of linear dynamical system and nonlinear 

algebraic functions. 

 

10.1.2 Issues, Main Results, and Theory   Among many methods listed in Figure 

10-1, we have to select a proper method to meet our goal. Fundamental questions include 

how we determine the right structure for representing a system; how we assure that data 

are good enough to identify the system; how we know the expected accuracy or variance 

of the identified model; and how we best design experiments.   
 

 

 

 

 

 

 

 

 

 

Figure 10-2 System identification process 

Key Questions: 

 

Q1: Is a given data set informative enough to uniquely determine a model from a given    

model set? 

Does Z contain sufficient information to distinguish any two models in M? 

 

Q2: Is merely minimizing the mean squared prediction error )(NV good enough to 

obtain the true (unbiased) model? 

  2

1

1
ˆ( ) ( ( ) ( | ))

2

N

N

t

V y t y t
N

 


    

 

What if the true model is not involved in the model set? 

How is the model-data fitting influenced by noise characteristics and input 

properties? 

 

Q3: How accurate is the estimated model? 

How much variance, expected error, etc.? 

How much data needed? 

 

Q4: How can we design experiments? 
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 Nonlinear function approximation: Radial basis functions, neural networks 

 Frequency-domain analysis: Informative experiment and persistent excitation 

 Input design: Pseudo Random Binary signal 

 Maximum likelihood and information theoretic approach 

 Accuracy-variance trade-off: Akaike’s Information Criterion 

Mathematical tools for Part 2 system identification 

 Discrete Fourier transform and spectral analysis 

 Central limit theorems 

 Random processes: wide-sense stationary process, ergodic process, etc. 

 

Identification and estimation are closely related. The same Prediction-Error approach 

used for estimation will be applied to identification. A few mathematical tools must be 

reviewed before discussing identification theory and techniques, however.  

10.2 Review of Mathematical Tools 

10.2.1 Impulse Response and Transfer Operator  

 

 

 

 

 

 

 

 

 
Figure 10-3 Impulse response 

 

Any linear time-invariant system can be completely characterized with Impulse Response: 

)(tg . For an arbitrary input, , the output y(t) is given by the convolution of the 

input and the impulse response given by 

 

 Continuous Time Convolution        (1) 
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),2(),1(),0( ggg , or   0)( g   
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Discrete Time Convolution 

 (2) 

 

Similar to the continuous-time differential operator shown above right, which leads to 

transfer function G(p), use of the following discrete-time shift operator, q, provides a 

discrete-time transfer function.   

 

Forward shift operator: q:   )1()(  tutqu       (3) 

 

Backward shift operator: q
-1
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10.2.2 Z-Transform 

Taking Laplace transform of (2) yields 
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where T is a sampling interval. Replacing sTe by z yields the z-transform of the 

transfer function  
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which is a complex function of sTez  . Poles and zeros are defined as: 
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A zero of G(z) is a complex number zi that makes G(z) zero:  G(zi)=0 

A pole of G(z) is a complex number zj that makes G(z) infinite   

 

Bounded-input, bounded output (BIBO) stability 
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The output is bounded; the condition of (7) satisfies the BIBO stability criterion. Q.E.D. 
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This stability criterion can be shown easily. For 1z   , 
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Therefore, there is no pole on and outside the unit circle, if the system is BIBO stable. 

Consider (6) as a Laurent expansion, the above result means that function G(z) is analytic on 

and outside the unit circle. 
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These  0)(~ kkg  give the impulse response of the inverse system. We write 
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Then G(q) is said to be inversely stable. 
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 Obtain the inverse transfer function of the following process: 
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11. Non-Parametric Linear System identification 

We begin with non-parametric system identification of linear time-invariant systems. One 

of the challenges in system identification is to select the right model structure. State 

equations and transfer functions use a particular parametric structure for representing the 

system effectively. However, it is often difficult to determine the order of the system, the 

number of poles and zeros, or the group of parameters that represent the system properly. 

On the other hand, we know that a linear time-invariant system can be represented by an 

impulse response, a Bode diagram, or other means, which do not require a selection of 

model structure. System identification without an explicit selection of parametric model 

structure is referred to as Non-Parametric Identification.  

 

11.1 Direct Methods 

 

11.1.1 Impulse Response Method   Consider a linear time-invariant system : 
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where the second term ( )v t is noise observed at the output. The impulse response 
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However, the noise term remains in the estimate of impulse response values: 
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We should use the maximum allowable input amplitude c for reducing the effect of noise.
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 Consider sine waves for determining the frequency transfer function in discrete time: 

 

( ) sin Im j tu t A t A e          (7) 

Substituting this into (10-2) yields 
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Measuring the amplitude and phase angle of output y(t) for each of many frequencies, we 

can determine the frequency transfer function. Note, however, that the output noise term 

v(t) remains as in the case of (5), which causes error in determining the transfer function. 

 

11.2 Correlation Method 

 

 Correlation Method allows us to eliminate the effect of noise. In this method, an 

input time sequence that is uncorrelated with noise is given to the system, and the 

correlation between input u(t) and output y(t) is computed. The idea is that the noise 

component involved in the output is filtered out, as it is uncorrelated with the input. 

  

 Recall the auto-correlation of a wide-sense stationary process: 
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or in discrete time 
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    The cross-correlation between the input and output is given by 
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Using (10-2) we can rewrite the output term as 
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Therefore, the cross-correlation is given by 
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This is called the Wiener-Hopf Equation: 

 

If the system is BIBO stable: lim ( ) 0
k
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which can be arranged in vector-matrix form 
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If the matrix is of full rank, (17) can be solved for the coefficients of Finite Impulse 

Response: 
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Various signals can be used for the input time sequence, which must be uncorrelated with 

noise. 
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11.2.1 Random Signal  Consider to use a random signal with variance  : 
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Note that this input signal is uncorrelated with time. Substituting this into (17) yields 
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    Now let us examine how the noise term is eliminated in this method. To this end we 

write the output as the sum of noise-free component ( )y t and noise: 
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Substituting this into the cross-correlation (12) 
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It is clear that the second term, the noise term, vanishes as it is uncorrelated with the 

input sequence. 

 

1
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Therefore, the Wiener-Hopf relationship can filter out the noise term uncorrelated 

with the input effectively. 

 

11.2.2 Sine-Cosine Signals   Periodic signals, such as sine and cosine waves, may 

be uncorrelated with noise and are thereby usable for the noise-free identification. 

Here we use sine and cosine waves as inputs and take correlation with the individual 

outputs. 
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Using (21) and (8), 
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Note that the second term vanishes for sufficiently long time-average. The noise term, too, 

vanishes, as it is uncorrelated with the sine wave. A similar result can be obtained for the 

cosine wave. 

      Combining the above results for ( ) and ( )S CI N I N we can obtain the gain and phase of 

the frequency transfer function without noise: 
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where 

 

2
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The above procedure must be repeated for different frequencies. Although the gain 

and phase of each frequency is noise-free in theory, the resultant Bode plots tend to 

be not smooth. Effective techniques, such as the Hamming Window, have been used 

widely to obtain smooth Bode plots. 

  

 

 




