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2.160 IDENTIFICATION, ESTIMATION, AND LEARNING 

LECTURE NOTES NO. 11 

12  Frequency Domain Analysis 

As an alternative to the time domain approach using auto- and cross-correlation 

functions, frequency-domain methods based on spectral analysis have been developed for 

obtaining frequency transfer functions of linear time-invariant systems. 

12.1 Discrete-Time Fourier Transform and Power Spectrum 
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A periodic function can be expanded to a Fourier series expansion. Therefore, we can 

write 
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Note that the last equation was derived from ( )
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the inverse transform of ( )X   is obtained as 
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Power Spectrum 

Consider a wide-sense stationary sequence )}({ ts for which the following limit 

exists: 

Time 
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  : Auto-correlation  (6) 

      (Auto-covariance if zero mean) 

 

 

 

 

 

 

 

 

 

The power spectrum of )}({ ts is defined as the Fourier transform of auto-correlation  

function )(sR  
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Inverse Transform: 
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A special case for 0  is: 
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Important! We will often use this formula to obtain the mean of a squared signal s(t), a 

special case of 0 . The sum of the square of signal s(t) represents a type of “energy” 

of the signal. The above expression represents that the signal energy in the time domain 

and that in the frequency domain are the same. This is referred to as Parseval’s Theorem, 

or Rayleigh’s Energy Theorem. 

 

White Noise 

 

We have seen “White Noise” in many sections of the previous lectures.  

We defined )}({ te  as a sequence of independent random variables with zero mean values 

and covariance : 
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Now its properties are 

characterized by using Power Spectrum. 
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The auto-covariance of the random process e(t) is given by 
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The left hand side of the above expression is a time average, while the right hand side is 

an ensemble average. If these two averages are the same, the process is called ergodic. 

We assume this ergodicity for most of the processes. See the discussion at the end of this 

lecture notes. 

 

For the above equation the Power spectrum is given by 
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e eR e e 
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The figures below show the plots of the auto-covariance eR ( ) against time and the 

corresponding power spectrum ( )e   against frequency. Note that the power spectrum 

plot is constant for the entire frequency. In optics, this means that the light has a uniform 

distribution over the entire wave length, that is, “White”. This is why the random process 

e(t) is called “White Noise”.  
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When the white noise is band-limited, the auto-covariance becomes a sinc function. See 

the figures. 

 

12.2 Applying spectral Analysis to System Identification 

A colored random signal can be created with the White noise going through a dynamical 

process. The following theorem plays a major role in many of the analyses involved in 

system identification. 

 

Theorem  

Let ( )H q  be the transfer function of a (BIBO) stable process with a White noise 

input ( )e t  of variance  .  
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The power spectrum of )(tv is given by 
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where  is the norm of a complex number, and ( )iH e  is obtained by replacing q in 

( )H q by ie  . 
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The power spectrum is then given by 
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(16) 

Here, ( )iH e  is a complex number, and ( )iH e  is its complex conjugate. The product of 

the two gives the squared norm of ( )iH e  . Q.E.D. 

Cross Spectrum 

Consider a time-invariant linear system ( )G q  and a wide-sense stationary signal 

{ ( )}u t with spectrum ( )u   

The cross spectrum is defined as 
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Following a procedure similar to the above theorem, we can show that the cross spectrum 

is related to the input power spectrum as 

 ( ) ( )i

yu uG e     (19) 

Note that the cross spectrum is a complex function, since ( )iG e  is complex. The

following properties of power spectrum and cross spectrum can be proven without 

difficulty: 

( ) ( ) ( )y t G q u t
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( ) ( ) 0u u     (20) 

( ) ( )uy yu    (21) 

Eq.(19) suggests a way of obtaining a frequency transfer function. 
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From an experimental data set {( ( ), ( )) | 1, , }y t u t t N , compute both input auto-

correlation and cross correlation, and obtain their power spectra. Dividing the cross 

spectrum by the input power spectrum gives the frequency transfer function. 

This method provides a consistent estimate of the transfer function, that is, the estimated 

transfer function ˆ ( )iG e  approaches its true function 
0 ( )iG e  despite noise ( )v t  as N tends

to infinity.  However, the estimation variance does not vanish although N tends to infinity. 

We can show that for a large N the variance is given by 
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where ( )v  is the power spectrum of noise ( )v t . 

Exercise  Prove the above error variance in estimating a frequency transfer function. 

It should be noted that the variance 

remains, no matter how many data 

points one can obtain for identifying 

the frequency transfer function. This 

often results in a jagged Bode plot, as 

illustrated in the figure below. To 

smoothen the curve, we can take a 

local average at each frequency, 

assuming that the true transfer function 

is smooth. Setting a window and a 

weight function in the vicinity of each 

frequency, we can take a weighted 

average of the frequency responses to 

obtain a smooth Body plot, as shown in 

the figure. There are various local 

averaging methods available, including 

the Hamming Window.  For details see 

Chapter 6.4 of  Ljung’s textbook. 
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Coherence 

Coherency is a measure often used to quantify the fidelity of a frequency transfer 

function obtained from experimental data. 
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In an ideal case, the coherence takes 1, indicating the highest fidelity. This can be shown 

by considering a perfectly linear, noise-less system, where 
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From the Theorem in the previous section we obtain 
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Dividing (26) by ( )y  and substituting (25) yields 
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 However, it becomes less than 1 due to various reasons, including: 

 Other inputs and noise contributing to the output;

 Nonlinear distortion: the system has some nonlinearity; and

 Leakage errors of the Discrete Fourier Transfer used.

It is recommended to evaluate the coherence over the frequency range used. We can find 

in which frequency range the linear model given by the transfer function is valid.   

Notes on stationary processes: We use 

  (28) 

One issue to clarify for mathematical rigor 

Deterministic Stochastic 
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Strictly speaking, the process is not stationary; input )(tu drives the system.  Therefore, 

the covariance function )(sR cannot be defined in general. 







N

t
N

s tsts
N

R
1

)()(
1

lim)(   

 The stationary property that we need is the existence of this covariance.  Then, we 

extend the definition to the one assuming the existence of )(sR   

 Quasi-Stationary (wide sense stationary) 

 

 Important theories and techniques of system identification are dependent upon the 

spectra of the involved signals, i.e. only the second-order properties, and not on any 

higher-order properties. 

Deterministic and stochastic processes are mixed.  )(te , )(tv are stochastic processes.  

The covariance function for this type of variable must be given an ensemble mean: 
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treatment will be very convenient, since we need to consider only one realization of the 

stochastic process, rather than considering the whole collection of ensemble average.  

This is an ergodicity problem.  For dynamical systems, this ergodicity holds for signals 

generated through uniformly stable filters )(qG  

 

  )()()( teqGts   

 

Under this assumption, the theoretical boundary between stochastic and deterministic 

processes is low. More discussion will be given in the following chapter. 

 

 


